
spatialite_gui-1.4.1
libspatialite v.2.4.0-RC5 Experimental

#1 The new spatialite_history metadata table

Internal event logging:
• metadata table creation and population: InitSpatialMetadata()
• geometry column creation: AddGeometryColumn(), RecoverGeometryColumn()
• Spatial Index: CreateSpatialIndex()
• evet description / timestamp
• versioning infos

#2 Checking / removing Duplicated Rows

Please see the cities_dupl table.
Simply the same as cities, but several duplicated rows were purposely inserted using the following
SQL statements:

INSERT INTO cities_dupl (id, name, population, geom)
SELECT NULL, name, population, geom
FROM cities;
INSERT INTO cities_dupl (id, name, population, geom)
SELECT NULL, name, population, geom
FROM cities
WHERE population > 100000;
INSERT INTO cities_dupl (id, name, population, geom)
SELECT NULL, name, population, geom
FROM cities
WHERE population > 200000;
INSERT INTO cities_dupl (id, name, population, geom)
SELECT NULL, name, population, geom
FROM cities
WHERE population > 500000;

The Check tool will identify any duplicate row (please note: any Primary Key column will be
ignored). And the Remove tool will eventually delete any duplicate row except the first one.

The same tool is supported by the spatialite CLI front end as .chkdupl and .remdupl

#3 Rudimentary Topology support

Please see the topoNodes, topoEdges and topoFaces tables.
They simply contain (alltogether) a topological representation of the United States (derived from
the U.S. Census Bureau TIGER dataset).

As you can easily notice, there is no direct representation of States as polygons.

• an Edge is a LINESTRING representing a common boundary shared by to two adjacent
States

• a Node is a POINT where two (or more) Edges intersects
• so each single State is represented by one (or more) Faces; but a Face simply is represented

as a collection of Edges (i.e. the ones delimiting the face's own boundary). No explicit
POLYGON is represented at the topolological level. And there is no GEOMETRY directly
corresponding to a Face.

SELECT f.face_id, Polygonize(Collect(e.geom))
FROM topoFaces AS f
JOIN topoEdges AS e ON (e.edge_id = f.edge_id)
GROUP BY f.face_id;

Collect() (aggregate function) will create a MULTILINESTRING corresponding to the complete
boundary delimiting a Face.
And then Polygonize() will reconstruct a POLYGON representing the same Face.

Nobody forbids us to create a further table representing State-Faces as POLYGONs:

CREATE TABLE state_polygs (
face_id INTEGER NOT NULL PRIMARY KEY);
SELECT AddGeometryColumn('state_polygs', 'geom', 4269, 'POLYGON',
'XY');
INSERT INTO state_polygs (face_id, geom)
SELECT f.face_id, Polygonize(Collect(e.geom))
FROM topoFaces AS f
JOIN topoEdges AS e ON (e.edge_id = f.edge_id)
GROUP BY f.face_id;

This is useful in order to test another two SQL functions recently introduced:

SELECT e.edge_id, e.geom
FROM state_polygs AS s
JOIN topoEdges AS e ON (CoveredBy(e.geom, s.geom))
WHERE s.face_id = 108;

This first query will identify any Edge covered by the Face corresponding to the Texas State.

SELECT s.face_id, s.geom
FROM topoEdges AS e
JOIN state_polygs AS s ON (Covers(s.geom, e.geom))
WHERE e.edge_id = 156;

And this second query will identify the two States sharing a common Edge (in this example: Texas
and Louisiana).

#4 reconstruncting a GPS track from WayPoints

This time we'll use the gps_track table. As you can notice this table actually contains several GPS
WayPoints:

SELECT MakeLine(MakePoint(longitude, latitude, 4326))
FROM gps_track
GROUP BY track_no;

Using the MakeLine() aggregate function you can easily get the whole GPS Track as a
LINESTRING.

SELECT MakeLine(MakePoint(longitude, latitude, 4326))
FROM gps_track
WHERE gps_timestamp BETWEEN
 '2011-02-14T14:45' AND
 '2011-02-14T14:55'
GROUP BY track_no;

And you can obviously extract a specific portion of this GPS track setting an appropriate time
interval: in this example the track walked on 2011-02-14 starting at 14:45 and ending at 14:55

#5 exporting KML files

We'll start again from the cities table.

CREATE VIEW main_cities AS
SELECT id AS "id", name AS "name",
 population AS "population", geom AS "geom"
FROM cities
WHERE population > 250000;
INSERT INTO views_geometry_columns
(view_name, view_geometry, view_rowid, f_table_name,
f_geometry_column)
VALUES ('main_cities', 'geom', 'ROWID', 'cities', 'geom');

Just to make things a little bit difficulties, we'll create first a main_cities VIEW (filtering towns >
250,000 peoples). Then we'll properly register this VIEW into view_geometry_columns, so to get a
real Spatial VIEW.

You must specify two columns: one corresponding to the <name> tag, the other corresponding to
the <descricption> tag: anyway, you can specify a constant string if no such column exist.

Once you've exported the KML file, you can perform a direct check using Google Earth (or any
other appropriate sw supporting KML).

