
spatialite_gui
v.1.5.0

a quick tutorial

ISTAT is the Italian National Census Authority: we'll use some data-sets of their own in order to
test and explain new features supported by v.1.5.0

You can freely download such data-sets at the following URLs:
http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/reg2011.zip
Regions: Shapefile

http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/prov2011.zip
Counties: Shapefile

http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/com2011.zip
Local Councils: Shapefile

http://www.istat.it/strumenti/definizioni/comuni/tutti_i_file_xls.zip
miscellaneous Microsoft Excel spreadsheets (statistics data)

As usual, our first step is the one to create a new DB-file, named italy.sqlite

http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/reg2011.zip
http://www.istat.it/strumenti/definizioni/comuni/tutti_i_file_xls.zip
http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/com2011.zip
http://www.istat.it/ambiente/cartografia/non_generalizzati/2011/prov2011.zip

Please note: the following tutorial closely mimics a corresponding one extensively explained in
the Cookbook.
This time we'll mainly focus out attention on new features supported by SpatiaLite v.3.0.0 and
spatialite_gui v.1.5.0

Anyway the current tutorial can be used as a first contact experience for absolute beginners and
novice users as well.

Then we'll access an external Shapefile via the VirtualShapefile driver. This way the Shapefile still
remains on the file-system, and no data at all will be loaded into the DB itself.
Simply a virtual link is created, supporting full SQL access on the external data-source.

Please note: accessing an external data-source is an intrinsically slow and inefficient process:
anyway this could be a really useful option on many cases.

This VirtualShapefile connection is intended to access comuni (i.e. Local Councils).

In order to establish a proper VirtualShapefile connection, you must simply specify the following
arguments:

• the name of the corresponding SQL table
• the SRID [System Reference ID]: for ISTAT 23032 (i.e. ED50 / UTM zone 32N) is the right

value to be used.
• the charset encoding: in this case CP1252, i.e. Windows Latin 1

Now we'll access two external DBF files via the VirtualDBF driver. Exactly as for Shapefiles, this
way the DBF still remains on the file-system, and no data at all will be loaded into the DB itself.

The first VirtualDBF connection is intended to access province (i.e. Counties); the second one is
intented to access regioni (i.e. Regions).

Please note: both province and regioni actually are Shapefiles.
But we already have Geometries represented at the lowest Local Council level, so storing
Geometries at highest hierarchic levels is absolutely redundant and unneeded.
Accessing the bare DBF (data attributes) is enough for our intended purposes.

In order to establish a proper VirtualDBF connection, you must simply specify the following
arguments:

• the name of the corresponding SQL table
• the charset encoding: in this case CP1252, i.e. Windows Latin 1

Please, repeat again this step, so to connect regioni as well via VirtualDBF.

New/Changed: as you can easily notice, now the Tables tree-view is clearly shown by distinct
categories. SQLite doesn't support the SCHEMA level, but this visual representation come very
close (just for visual/GUI purposes).

Any Table containing ordinary data is now placed under the User Data tree-node.
Any other tree-node contains special or system tables, i.e. tables not at all intended to be directly
accessed by lay users.
The default behavior is the one to show the User Data node in its expanded, state, whilst any other
special/system node is shown in the collapsed state.

You can obviously explicitly expand the appropriate special node, then querying any hidden table,
exactly as before: all them are simply displaced into a most convenient location.

Please note: a further meta-data table is now supported: spatialite_history
Its intended scope is the one to register the most relevant events affecting the DB-file (think of
something like an internal logfile).

SQL snippet:
SELECT c.nome_com AS LocalCouncil, p.nome_pro AS County,
 r.nome_reg AS Region
FROM com2011 AS c
JOIN prov2011 AS p ON (c.cod_pro = p.cod_pro)
JOIN reg2011 AS r ON (c.cod_reg = r.cod_reg)
ORDER BY LocalCouncil;
New/Changed: you can now safely JOIN Virtual Tables. As you can notice, the above JOIN is fully
based on VirtualShapefile and VirtualDBF tables.

Please note: any JOIN operation involving one (or more) Virutal Table is intrinsically slow and
inefficient. Consider this options simply as an useful tool to be used during preliminary data
handling / exploration.
Never attempt to widely use such feature for any serious production task: loading your data into real
DB tables is very simple, and can offer you a by far better environment effectively supporting full
query optimization and fast data access.

New/Changed: a further Virtual driver is now supported: VirtualXL
This is intended to access (read only mode) any Microsoft Excel spreadsheet stored in the BIFF
binary format (aka .xls).

Please note: only .xls documents are supported.
The VirtualXL driver isn't able to read the newest Office Open XML based spreadsheets (.docx
or .docm)

This VirtualXL connection is intended to access elenco_comuni_italiani_30_giugno_2011.xls a
spreadsheet shipping useful statistic data for Local Councils

In order to establish a proper VirtualXL connection, you must specify the following arguments:
• which specific Worksheet do you intend to access [any spreadsheet is internally organized

as a Workbook potentially containing more Worksheets]
• and you can specify if the first line has a special meaning [column descriptive names]

SQL snippet:
SELECT c.nome_com AS LocalCouncil,
 s."Altitudine del centro (metri)" AS Elevation,
 s."Popolazione legale 2001 (21/10/2001)" AS Peoples2001,
 s."Popolazione residente al 31/12/2008" AS Peoples2008,
 s."Popolazione residente al 31/12/2009" AS Peoples2009,
 s."Popolazione residente al 31/12/2010" AS Peoples2010
FROM com2011 AS c
JOIN elenco_comuni_italiani_30_giugno_2011 As s
 ON (s."Codice Istat del Comune
(formato numerico)" = c.pro_com)
ORDER BY c.nome_com;

You can obviously JOIN a VirtualXL table and any other table. In this case we've just JOINed
LocalCouncils (Shapefile) and the corresponding spreadsheet.

Please note: the “Codice Istat del Comune (formato numerico)” column name is split on two lines.
This is purposely intended, and is not at all a mistake or a typo.
Spreadsheet oddities: this string actually contains a CR (carriage return) !!!

Merging altogether now
CREATE TABLE local_councils (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 lc_name TEXT NOT NULL,
 county_town INTEGER NOT NULL,
 county_name TEXT NOT NULL,
 region_name TEXT NOT NULL,
 elevation INTEGER NOT NULL,
 peoples_2001 INTEGER NOT NULL,
 peoples_2008 INTEGER NOT NULL,
 peoples_2009 INTEGER NOT NULL,
 peoples_2010 INTEGER NOT NULL);
SELECT AddGeometryColumn('local_councils', 'geom', 23032,
 'MULTIPOLYGON', 'XY');
SELECT CreateSpatialIndex('local_councils', 'geom');
Now we'll create a real DB table, intended to store our own Local Councils, rearranged in a most
convenient way.

INSERT INTO local_councils (id, lc_name, geom,
 county_town, county_name, region_name, elevation,
 peoples_2001, peoples_2008, peoples_2009, peoples_2010)
SELECT NULL, c.nome_com, c.geometry,
 s."Comune capoluogo di provincia", p.nome_pro, r.nome_reg,
 s."Altitudine del centro (metri)",
 s."Popolazione legale 2001 (21/10/2001)",
 s."Popolazione residente al 31/12/2008",
 s."Popolazione residente al 31/12/2009",
 s."Popolazione residente al 31/12/2010"
FROM com2011 AS c
JOIN prov2011 AS p ON (c.cod_pro = p.cod_pro)
JOIN reg2011 AS r ON (c.cod_reg = r.cod_reg)
JOIN elenco_comuni_italiani_30_giugno_2011 As s
 ON (s."Codice Istat del Comune
(formato numerico)" = c.pro_com);
Then we'll duly populate this freshly created table.

Anyway we've encountered some really puzzling problem, as we can easily detect performing some
basic check:
SELECT Count(*) FROM com2011;

8094
SELECT Count(*) FROM local_councils;

8091

There are 8.094 Local Councils in the original Shapefile, but we actually have only 8.091 in the
final rearranged table. We loose 3 Local Councils during processing … not a good thing at all.

SELECT c.nome_com AS LocalCouncil, c.pro_com,
 s."Altitudine del centro (metri)" AS Elevation
FROM com2011 AS c
LEFT JOIN elenco_comuni_italiani_30_giugno_2011 As s
 ON (s."Codice Istat del Comune
(formato numerico)" = c.pro_com)
WHERE Elevation IS NULL;

Consiglio di Rumo 13076 NULL
Germasino 13108 NULL
Gravedona 13112 NULL

A further SQL query allow us to discover the missing Local Councils; and Wikipedia tell us what
really happened. http://en.wikipedia.org/wiki/Germasino
Three small Local Councils disbanded very recently (February 2011), merging into a new Local
Council named Gravedona e Uniti.

SELECT "Solo denominazione in italiano", "Codice Istat del Comune
(formato numerico)"
FROM elenco_comuni_italiani_30_giugno_2011
WHERE "Solo denominazione in italiano" LIKE 'Gravedona%';

Gravedona ed Uniti 13249.000000

And the spreadsheet correctly contains data for the newly incorporated Local Council; there is an
obvious inconsistency between the Shapefile and the spreadsheet.
We simply have now to recover this issue, so to get a complete (and fully updated) map
representing Italian Local Councils.

http://en.wikipedia.org/wiki/Germasino

INSERT INTO local_councils (id, lc_name, geom,
 county_town, county_name, region_name, elevation,
 peoples_2001, peoples_2008, peoples_2009, peoples_2010)
SELECT NULL, 'Gravedona ed Uniti',
 CastToMultiPolygon(ST_Union(c.geometry)),
 s."Comune capoluogo di provincia", p.nome_pro, r.nome_reg,
 s."Altitudine del centro (metri)",
 s."Popolazione legale 2001 (21/10/2001)",
 s."Popolazione residente al 31/12/2008",
 s."Popolazione residente al 31/12/2009",
 s."Popolazione residente al 31/12/2010"
FROM com2011 AS c, elenco_comuni_italiani_30_giugno_2011 As s
JOIN prov2011 AS p ON (c.cod_pro = p.cod_pro)
JOIN reg2011 AS r ON (c.cod_reg = r.cod_reg)
WHERE c.pro_com IN (13076, 13108, 13112) AND
 s."Codice Istat del Comune
(formato numerico)" = 13249
GROUP BY 1, 2, 4, 5, 6, 7, 8, 9, 10, 11;

Happily this one is a quite trivial operation using Spatial SQL: and now we have our updated Local
Councils Map ready to be deployed.

We can now safely DROP any Virtual table (i.e. removing the virtual links to external data-sources
we have simply used to produce the final rearranged and updated layer).

New/Changed: spatialite_gui-1.5.0 now supports more export formats

You surely already know DBF, because it's a standard Shapefile component used to store data
attributes.

DIF [Data Interchange Format] and SYLK [Symbolic Link] are two plain-text formats specifically
intended for spreadsheets.
Both them are really ancient (since the DOS days), but they are still supported today by any
spreadsheet tool, ranging from Microsoft Excel to OpenOffice Calc, not to mention Gnumerics and
several others.

As a general rule, using DBF, DIF and SYLK formats is by far a better choice if the intended
scope of your exported data is to be used before or later on some spreadsheet tool: Txt/Tab and
CSV are more generic and flexible, but may cause several headaches sometimes.
The SYLK format fully supports odd data-types, such as DATE and TIME; and effectively
circumvents any potential issue related to Charser Encoding and decimal-point-is-point / decimal-
point-is-comma

Exactly as before you can export any Geometry Table as Shapefile: but now KML as well is a
supported option.

New/Changed: now you can export any query result-set in many different formats

SQL scripting
Notoriously dandies, old ladies and kids are fond of visual GUI tools.
Rude men (and real programmers, of both sexes) widely use command line tools and SQL scripting.

--
-- importing com2011 Shapefile
--
.loadshp com2011 com2011 CP1252 23032
--
-- importing prov2011 DBF
--
.loaddbf prov2011.dbf prov2011 CP1252
--
-- importing reg2011 DBF
--
.loaddbf reg2011.dbf reg2011 CP1252
--
-- importing the XLS spreadsheet
--
.loadxl elenco_comuni_italiani_30_giugno_2011.xls elenco_comuni 1 1
--
-- creating the output table (no Geometry)
--
CREATE TABLE local_councils (
 id INTEGER PRIMARY KEY AUTOINCREMENT,
 lc_name TEXT NOT NULL,
 county_town INTEGER NOT NULL,
 county_name TEXT NOT NULL,
 region_name TEXT NOT NULL,
 elevation INTEGER NOT NULL,
 peoples_2001 INTEGER NOT NULL,
 peoples_2008 INTEGER NOT NULL,
 peoples_2009 INTEGER NOT NULL,
 peoples_2010 INTEGER NOT NULL);

--
-- populating the output table
--
INSERT INTO local_councils (id, lc_name, county_town,
 county_name, region_name, elevation, peoples_2001,
 peoples_2008, peoples_2009, peoples_2010)
SELECT NULL, c.nome_com, s."Comune capoluogo di provincia",
 p.nome_pro, r.nome_reg, s."Altitudine del centro (metri)",
 s."Popolazione legale 2001 (21/10/2001)",
 s."Popolazione residente al 31/12/2008",
 s."Popolazione residente al 31/12/2009",
 s."Popolazione residente al 31/12/2010"
FROM com2011 AS c
JOIN prov2011 AS p ON (c.cod_pro = p.cod_pro)
JOIN reg2011 AS r ON (c.cod_reg = r.cod_reg)
JOIN elenco_comuni As s
 ON (s."Codice Istat del Comune
(formato numerico)" = c.pro_com);
--
-- exporting as DBF
--
.dumpdbf elenco_comuni out_comuni.dbf CP1252
--
-- end job
--

>spatialite italia.sqlite <test_script.sql
SpatiaLite version ..: 3.0.0-BETA Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualDbf' [direct DBF access]
 - 'VirtualXL' [direct XLS access]
 - 'VirtualText' [direct CSV/TXT access]
 - 'VirtualNetwork' [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualSpatialIndex' [R*Tree metahandler]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 version: Rel. 4.7.1, 23 September 2009
GEOS version: 3.3.0-CAPI-1.7.0
the SPATIAL_REF_SYS table already contains some row(s)
========
Loading shapefile at 'com2011' into SQLite table 'com2011'
BEGIN;
CREATE TABLE com2011 (
PK_UID INTEGER PRIMARY KEY AUTOINCREMENT,
"COD_REG" INTEGER,
"COD_PRO" INTEGER,
"PRO_COM" INTEGER,
"NOME_COM" TEXT,
"NOME_TED" TEXT,
"SHAPE_Leng" DOUBLE,
"SHAPE_Area" DOUBLE);
SELECT AddGeometryColumn('com2011', 'Geometry', 23032, 'MULTIPOLYGON', 'XY');
COMMIT;
Inserted 8094 rows into 'com2011' from SHAPEFILE
========
========
Loading DBF at 'prov2011.dbf' into SQLite table 'prov2011'
BEGIN;
CREATE TABLE prov2011 (
PK_UID INTEGER PRIMARY KEY AUTOINCREMENT,
"COD_REG" INTEGER,
"COD_PRO" INTEGER,
"NOME_PRO" TEXT,
"SHAPE_Leng" DOUBLE,
"SHAPE_Area" DOUBLE);
COMMIT;
Inserted 110 rows into 'prov2011' from DBF
========
========
Loading DBF at 'reg2011.dbf' into SQLite table 'reg2011'
BEGIN;
CREATE TABLE reg2011 (
PK_UID INTEGER PRIMARY KEY AUTOINCREMENT,
"COD_REG" INTEGER,
"NOME_REG" TEXT,
"SHAPE_Leng" DOUBLE,
"SHAPE_Area" DOUBLE);
COMMIT;
Inserted 20 rows into 'reg2011' from DBF
========
XL loaded
8094 inserted rows
Exported 8093 rows into the DBF file
>
You can use the above sample as an useful reference guide
(a simple code snippet surely tells more to rogue coders than many words)

