
Spatialite-gui
a GUI tool to manage SQLite and SpatiaLite databases

Just few very short notes showing

How to get started as quick as possible

You've just launched spatialite-gui; so you are now facing a window like this one … as you can
easily understand, currently there is no database connected.

We obviously have now to establish a connection to some database, but before beginning any actual
work, let us examine the two buttons evidenced at the tool-bar rightmost side.

Default output charset:

spatialite-gui automatically detects the locale charset setting currently in use on your PC; but may
well be you wish to use a different one, or you prefer choosing the output charset to be used each
time one is needed. This small pane enables you to manage this aspect as you need.

On-line help:

You can easily check the SQL syntax expected by SQLite and SpatiaLite using this help pane.

Establishing a connection to some database:

SQLite adopts a peculiar architecture: a whole database is contained in an ordinary file. So you can
choose one of the following actions:

• connect to an already existing database-file
• create a new (initially empty) database-file

NOTE: the latest spatialite-gui version automatically initializes any newly created database.
Consequently now there is no need to manually execute the init_spatialite.sql script, because this
task has already been performed during database creation.
As you can notice, the geometry_columns and spatial_ref_sys tables are already defined and
populated as appropriate immediately after database creation.

And SQLite supports as well the capability to store databases directly in memory, with no need to
use any file-system file. So the complete range of actions you can perform in order to establish a
database connection is as follows:

• connecting to an already existing database-file
• creating a new (initially empty) database-file
• loading an already existing database-file as an in-memory-database
• creating a new (initially empty) in-memory-database

An in-memory-database is exactly identical to a database-file; there is no difference at all, except
for the specific features allowed by each one of the storage media used:

• disk storage is slow, but persistent and usually offers an huge space to be allocated.
• memory storage is fast, but volatile and usually offers a much more limited space.

This practically means that very easily you can get supersonic performances using in-memory-
databases, but this may be a risky operation because:

• if some trouble arises (power failure, system crash …) any update you have performed on
the database will be irreparably lost.

• if the memory space required to store the database is too big, you can then get the paradox
effect to slow down your system in a severe way.

Anyway, using an in-memory-database really is a very smart idea if:
• your database requires a reasonable amount of space: e.g. supposing you are using some

PC mounting 2GB RAM, you can safely load a 512GB database. But trying to load an 1GB
database on 512GB RAM is a very bad idea for sure.

• you are using the database essentially in a read-only mode, i.e. you are plannig to perform
lots and lots of SELECTs, and very few INSERTs, UPDATEs or DELETEs

• you are initially feeding a new database importing several shapefiles. Creating and feeding
lots of tables, and creating many R*Tree spatial indices and ordinary indices may take a
long time; working in-memory will help a lot. And after all, if something goes the wrong
way you can restart anything from scratch with few pain.

Supposing you have opted to connect some database-file [the conventional way], you are now
enabled to perform the following actions:

Close the database connection:

spatialite-gui is no longer connected to any database.
And you can now connect to a different database.

Perform a VACUUM:

This one is a maintenance operation. The complete database will undergone a full rebuild, and any
unused space will be actually freed:

• VACUUMing an huge database may require a long time
• a properly VACUUMed database surely performs better

It's your choice why and when VACUUMize your databases; anyway performing a VACUUM is
absolutely suggested as a good practice every time you've performed an huge number of INSERTs
and/or DELETEs.

Supposing you have opted to connect some in-memory-database [the unconventional way], you are
now enabled to perform the following actions:

Close the database connection:

Exactly the same as above. But this time your database was using a volatile storage media, so any
data is now irremediably lost.
This one may be a good new is you where performing some stupid test, but may be a real
catastrophe if you where performing any serious work.

Perform a VACUUM:

Exactly the same as above, but this time anything runs faster.
Please, carefully consider that VACUUMing an in-memory-database more or less requires twice
the memory amount currently required.

Save the in-memory-database as a database-file :

Any in-memory-database is volatile, but any database-file is persistent.
So, exporting the complete database precariously stored in-memory as a permanent database-file
hosted on the local file system may be a very good idea, if you are anyway interested in preserving
your data for the eternity [or so on …].

Exporting a database requires a several seconds / few minutes; obviously this depends on available
hardware and/or database size; anyway this option makes the use of memory storage a sane
solution, because you are allowed to:

• take any speed benefit deriving from using memory storage.
• and then save permanently any update you've performed.

Configure the AutoSave feature:

spatialite-gui supports an even smarter feature, i.e. the one of AutoSaving the in-memory-database
to a corresponding database-file from time to time, on a regular and periodic base:

• an external database-file path is required
◦ if the in-memory-database was loaded from a database-file, then the original database-

file will be periodically overwritten.
◦ if the in-memory-database was created from scratch, in order to actually start the

AutoSave feature you are required to perform a manual Save a first time; then the same
path will be periodically overwritten.

• you can select the time interval, choosing the one most well suited to your needs.
• The AutoSave feature is smart enough to skip unneeded exports [i.e. when the in-memory-

database has no pending changes to be saved]
• To prevent any obnoxious consequence deriving from system crashes, power failures and so

on, the following security schema is implemented by AutoSave:
◦ the already existing database-file is renamed as database-file.bak
◦ then a new copy of database-file is generated by export.
◦ and finally database-file.bak is deleted
◦ so, if something goes the wrong way, database-file.bak still contains a (may be

obsolete) valid copy of your database.

All right, now you know all we need to know about database connections.
It's time to start using spatialite-gui for some useful task.

The tool-bar enables you to start the following activities:
• execute some SQL script
• load some Shapefile into the database
• access some external Shapefile using the VirtualShape module
• load some TXT/CSV file into the database
• access some external TXT/CSV file using the VirtualText module
• build a Network to be used for Routing
• import one (or more) EXIF GPS pictures into the database
• search the EPSG reference system dataset by name

You can perform more specific actions involving a single table simply left-clicking on the table
name, and then selecting the required action from the context menu …

… and you can perform specific actions involving a single Geometry column following the same
way as above …

... you can compose any SQL statement at your will and then execute it.
If the SQL statement you've just executed returned some result set, then this latter will be shown as
a scrollable grid.
And Spatialite-gui manages an history containing any SQL statement performed since now; you
can navigate the history back and forward, and eventually re-execute some statement again.

If the result set returned by some SQL statement is a very long one [i.e. if it contains a large
number of rows], then spatialite-gui avoids to show all the lines contained in the result set, because
such an action may potentially require an huge memory amount, and may take a very long time.
So, when an huge result set is encountered, spatialite-gui will show only 500 rows at each time [i.e.
a single block of rows is shown at each time]. You then can:

• goto the first block in the result set
• goto the last block in the result set
• goto the next block, i.e. the one immediately following the current one
• goto the previous block, i.e. the one immediately preceding the current one
• refresh the result set, i.e. performing the query again another time.

If the result set currently shown into the grid was obtained by activating the Edit table rows menu
item, then you are actually enabled to edit cell values, more or less in the same way as if you where
using some spreadsheet software.

Any modified cell value will then be evidenced; and deleted rows will be evidenced as well.

That's all folks … enjoy and have fun

