readosm
1.0.0b

Generated by Doxygen 1.8.1.1

Sun Nov 11 2012 18:19:31

Contents

1 Main Page

1.1 Introduction

2 About Open Street Map datasets

21 Node.............
22 Way
23 Relation

3 Open Street Map file formats

3.1 XML (.osm)files
3.2 Protocol Buffer (.pbf) files . .

3.3 ReadOSM basic architecture

4 ReadOSM basic architecture

5 Data Structure Index

5.1 Data Structures

6 File Index

6.1 FileList

7 Data Structure Documentation

7.1 readosm_member_struct Struct Reference oL oL o

7.1.1 Detailed Description

7.2 readosm_node_struct Struct Reference L o

7.2.1 Detailed Description

7.3 readosm_relation_struct Struct Reference

7.3.1 Detailed Description

7.4 readosm_tag_struct Struct Referenceo

7.4.1 Detailed Description

7.5 readosm_way_struct Struct Reference Lo

7.5.1 Detailed Description

8 File Documentation

A A OO W

o o o O

11
11

13
13
13
13
14
15
16
16
16
16
17

19

CONTENTS

8.1 headers/readosm.h File Reference 19
8.1.1 Detailed Description L 20
8.1.2 Typedef Documentation e 21

8.1.2.1 readosm_member e 21
8.1.22 readosm NOdE e e e e e e 21
8.1.2.3 readosm_relation 21
8.1.24 readosm_tag 21
8.1.25 readosm_wayo 21
8.1.3 Function Documentation 21
8.1.3.1 readosm_close e e 21
8.1.3.2 readoSm_OpEeNn 22
8.1.3.3 readosm_parse e 22

Example Documentation 25

9.1 testosmi.c L e 25

9.2 test_0SM2.C L e e e 30

9.3 test 0SM3.C e e e e 33

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 1

Main Page

1.1 Introduction

ReadOSM is a C open source library to extract valid data from within an Open Street Map input file. Such OSM files
come in two different formats:

« files identified by the .osm suffix simply are plain XML files.

« files identified by the .pbf suffix contain the same data, but adopting the Google’s Protocol Buffer serialization
format (a2 more concise and compressed binary notation, thus requiring much less storage space).

The ReadOSM design goals are:

« to be simple and lightweight
 to be stable, robust and efficient
+ to be easily and universally portable.

» making the whole parsing process of both .osm or .pbf files completely transparent from the application own
perspective.

ReadOSM is structurally simple and quite light-weight (typically about 20K of object code, stripped). ReadOSM has
only two key dependencies:

« zlib (the well known ZIP library), which is used to decompress zipped binary blocks internally stored within
.pbf files.

« expat (a widely used XML parsing library), which is used to parse XML .osm files.
* both libraries are widely available on many platforms.

Building and installing ReadOSM is straightforward:

./configure
make
make install

Linking ReadOSM to your own code is usually simple:
gcc my_program.c —O my_program —lreadosm
On some systems you may have to provide a slightly more complex arrangement:

gcc —-I/usr/local/include my_program.c -o my_program \
-L/usr/local/lib -lreadosm -lexpat -1z

2 Main Page

ReadOSM also provides pkg-config support, so you can also do:

gcc ‘pkg-config --cflags readosm' my_program.c -o my_program ‘pkg-config --1libs readosm®

| originally developed ReadOSM simply in order to allow the SpatiaLite’s own CLI tools to acquire both OSM .osm
and .pbf files indifferently. Anyway | feel that supporting OSM files import/parsing in a simple and easy way could
be useful to many other developers, so | quickly decided to implement all this stuff as a self-standing library.

ReadOSM is licensed under the MPL tri-license terms: you are free to choose the best-fit license between:

+ the MPL 1.1
+ the GPL v2.0 or any subsequent version

» the LGPL v2.1 or any subsequent version

Enjoy, and happy coding

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 2

About Open Street Map datasets

Open Street Map aka OSM [http: //www.openstreetmap.orqg/]is avery popular community project aimed
to produced a map of the world; this map is absolutely free and is released under the ODbL license terms [ht tp—
://opendatacommons.org/licenses/odbl/].

Selected portions [by Country / Region] of the OSM map are available on the following download sites:
e http://download.geofabrik.de/

* http://downloads.cloudmade.com/

The best known format used to ship OSM datasets is based on XML; we’ll shortly examine the XML general layout
so to explain the objects used by the OSM data model and their mutual relationships.

2.1 Node

A Node simply corresponds to a 2D POINT Geometry; the geographic coordinates are always expressed as Longi-
tude and Latitude (corresponding to SRID 4326).

A Node doesn’t simply have a geometry; it's usually characterized by several data attributes:
« id: a number uniquely identifying each Node object.
+ lon and lat: the geographic Longitude and Latitude of the Point.
 version: a progressive number identifying subsequent versions of the same object.

» changeset: a progressive number identifying a "changeset", i.e. a batch insert/update performed by same
user.

+ user: nickname of the user committing the changeset.
 uid: a number uniquely identifying the user
+ timestemp: commit date-time

+ tag-list: any object may eventually be further qualified using arbitrary key:value pairs.
The following is the XML general layout used to represent a Node object:

<node 1d="12345" lat="6.66666" lon="7.77777" version="1" changeset="54321" user="some-user" uid="66" timestamg
<tag key="created_by" value="JOSM" />
<tag key="tourism" value="camp_site" />

</node>

http://www.openstreetmap.org/
http://opendatacommons.org/licenses/odbl/
http://opendatacommons.org/licenses/odbl/
http://download.geofabrik.de/
http://downloads.cloudmade.com/

4 About Open Street Map datasets

2.2 Way

A Way corresponds to a 2D LINESTRING Geometry: anyway the vertices never are directly defined within the Way
itself; a list of indirectly referenced Nodes (<nd ref> items) is required instead.

The data attributes characterizing a Way are more or less the same used for Nodes, and with identical meaning;
and for Ways too an arbitrary collection of Tags (key:value pairs) is supported.

The following is the XML general layout used to represent a Way object:

<way 1d="12345" version="1" changeset="54321" user="some-user" uid="66" timestamp="2005-02-28T17:45:15Z2">
<nd ref="12345" />
<nd ref="12346" />
<nd ref="12347" />
<tag key="created_by" value="JOsM" />
<tag key="tourism" value="camp_site" />
</way>

2.3 Relation

A Relation is a complex object: it can correspond to a 2D POLYGON, or to a 2D MULTILINESTRING, or even to a
2D GEOMETRYCOLLECTION.

A Relation object can reference any other kind of OSM objects: each <member> item can address a Node object,
a Way object or another Relation object; the type attribute will always specify the nature of the referenced object,
and the optional role attribute may eventually better specify the intended scope.

The data attributes characterizing a Relation are exactly the same used for Ways, and with identical meaning; and
for Relations too an arbitrary collection of Tags (key:value pairs) is supported.

The following is the XML general layout used to represent a Relation object:

<relation id="12345" version="1" changeset="54321" user="some-user" uid="66" timestamp="2005-02-28T17:45:1572">
<member type="way" ref="12345" role="outer" />
<member type="way" ref="12346" role="inner" />
<tag key="created_by" value="JOSM" />
<tag key="tourism" value="camp_site" />
</relation>

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 3

Open Street Map file formats

There are two distinct formats used to ship OSM datasets: both contains the exact same information, but the internal
layout is radically different.

3.1 XML (.osm) files

OSM files based on the XML notation are widely used: usually they are identified by the .osm suffix.

XML is notoriously verbose and usually requires lots of storage space; happily enough, XML it’s strongly compress-
ible.

Accordingly to this consideration, the most commonly found OSM files are identified by the .osm.bz2 suffix: this
practically means that the .osm (XML) file has been compressed using bzip2. In order to actually process a .osm.-
bz2 OSM file a two-steps approach is always required:

» decompressing the file (using bunzip2 or some other tool)

« then parsing the resulting .osm file

 please note: the inflated file will require about 10/15 times the amount space required by the compressed file;
many OSM XML files could actually be impressively huge (several GB).

3.2 Protocol Buffer (.pbf) files

An alternative OSM file format is based on the Google’s Protocol Buffer encoding [https://developers. -
google.com/protocol-buffers/docs/encoding]

This OSM format is based on a public and documented specification: [http://wiki.openstreetmap. -
org/wiki/PBF_Format]

OSM files based on Protocol Buffer encoding are usually identified by the .pbf suffix.

The main benefit coming from using .pbf files is in that they are much more compact (smaller size) than the cor-
responding .osm.bz2; and they can be immediately parsed, no preliminary decompression step being required at
all.

3.3 ReadOSM basic architecture

The intended scope of ReadOSM is to allow transparent parsing of both OSM formats indifferently. There is no
need to take care of any internal low-level aspect, because the library itself silently handles any required step. The
simple and easy abstract interface implemented by ReadOSM is exactly intended so to allow many reader-apps to
consume OSM-input files in the most painless way; and all this requires only a very limited memory footprint.

https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding
http://wiki.openstreetmap.org/wiki/PBF_Format
http://wiki.openstreetmap.org/wiki/PBF_Format

Open Street Map file formats

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 4

ReadOSM basic architecture

ReadOSM implements a very simple and straightforward interface; there are only three methods:

» readosm_open(): this function is intended to establish a connection to some OSM input file.
» readosm_close(): this function is intended to terminate a previously established connection.

» readosm_parse(): a single function dispatching the whole parsing process (mainly based on callback func-
tions).

Accordingly to the above premises, implementing a complete OSM parser is incredibly simple:

#include <readosm.h>

static int
parse_node (const void xuser_data, const readosm_node * node)
{
/+ callback function consuming Node objects «*/
struct some_user_defined_struct *my_struct =
(struct some_user_defined_struct %) user_data;

some smart code

return READOSM_OK;
}

static int
parse_way (const void xuser_data, const readosm_way * way)
{
/+ callback function consuming Way objects x/
struct some_user_defined_struct smy_struct =
(struct some_user_defined_struct =) user_data;

some smart code

return READOSM_OK;
}

static int
parse_relation (const void xuser_data, const readosm_relation » relation)
{
/+ callback function consuming Relation objects x/
struct some_user_defined_struct xmy_struct =
(struct some_user_defined_struct) user_data;

some smart code

return READOSM_OK;
}

int main ()

{

8 ReadOSM basic architecture

/+ the basic OSM parser implementation =/

int ret;

const void =*handle;

struct some_user_defined_struct my_struct;

ret = readosm_open ("path-to-some-OSM-file", &handle);
error handling intentionally suppressed

ret = readosm_parse (handle, &my_struct, parse_node, parse_way, parse_relation);
error handling intentionally suppressed

ret = readosm_close (handle);

error handling intentionally suppressed

return 0;

So the real programming work is simply the one required in order to implement the callback-functions own code.

You can usefully read and study the Examples code-samples in order to get any other relevant information about
this topic.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 5

Data Structure Index

5.1 Data Structures

Here are the data structures with brief descriptions:

readosm_member_struct

Struct representing a RELATION-MEMBER, and wrapping an XML fragment like the following:
readosm_node_struct

Struct representing a NODE object, and wrapping a complex XML fragment like the following: .
readosm_relation_struct

Struct representing a RELATION object, and wrapping a complex XML fragment like the

following: e e e
readosm_tag_struct

Struct representing a key:value pair, and wrapping an XML fragment like the following:
readosm_way_struct

Struct representing a WAY object, and wrapping a complex XML fragment like the following:

13

13

15

16

10

Data Structure Index

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 6

File Index

6.1 File List

Here is a list of all documented files with brief descriptions:

headers/readosm.h
Function declarations and constants for ReadOSM library

12

File Index

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 7

Data Structure Documentation

7.1 readosm_member_struct Struct Reference

a struct representing a RELATION-MEMBER, and wrapping an XML fragment like the following:

#include <readosm.h>

Data Fields

 const int member_type

can be one of: READOSM_MEMBER_NODE, READOSM_MEMBER_WAY or READOSM_MEMBER_RELATION
+ const long long id

ID-value identifying the referenced object.
+ const char * role

intended role for this reference

7.1.1 Detailed Description
a struct representing a RELATION-MEMBER, and wrapping an XML fragment like the following:
@verbatim

<member type="some-type" ref="12345" role="some-role">

Examples:

test_osm1.c, and test_osm2.c.
The documentation for this struct was generated from the following file:

* headers/readosm.h

7.2 readosm_node_struct Struct Reference

a struct representing a NODE object, and wrapping a complex XML fragment like the following:

#include <readosm.h>

14 Data Structure Documentation

Collaboration diagram for readosm_node_ struct:

readosm_tag_struct

3

|tags
|

readosm_node_struct

Data Fields

» const long long id
NODE-ID (expected to be a unique value)

 const double latitude
geographic latitude

+ const double longitude
geographic longitude

+ const int version
object version

+ const long long changeset
ChangeSet ID.

 const char * user

name of the User defining this NODE
const int uid

corresponding numeric UserlD
+ const char * timestamp
when this NODE was defined
const int tag_count

number of associated TAGs (may be zero)
const readosm_tag * tags

array of TAG objects (may be NULL)

7.2.1 Detailed Description
a struct representing a NODE object, and wrapping a complex XML fragment like the following:

@verbatim

<node id="12345" lat="6.66666" lon="7.77777" version="1" changeset="54321" user="some-user" uid="66"
timestamp="2005-02-28T17:45:15Z"> <tag key="created_by" value="JOSM"> <tag key="tourism" value="camp-
_site"> </node>

Examples:

test_osmi.c, test_osm2.c, and test_osm3.c.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

7.3 readosm_relation_struct Struct Reference

15

The documentation for this struct was generated from the following file:

» headers/readosm.h

7.3 readosm_relation_struct Struct Reference

a struct representing a RELATION object, and wrapping a complex XML fragment like the following:

#include <readosm.h>

Collaboration diagram for readosm_relation_struct:

readosm_tag_struct

readosm_member_struct

A3

AN
\ tags
AN
AN

b 4

/
, members

7/
/

readosm_relation_struct

Data Fields

« const long long id

RELATION-ID (expected to be a unique value)
+ const int version

object version
» const long long changeset

ChangeSet ID.
* const char * user

name of the User defining this RELATION
« const int uid

corresponding numeric UserlD
 const char * timestamp

when this RELATION was defined
» const int member_count

number of associated MEMBERs (may be zero)
» const readosm_member * members

array of MEMBER objects (may be NULL)
 constint tag_count

number of associated TAGs (may be zero)
 const readosm_tag * tags

array of TAG objects (may be NULL)

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

16 Data Structure Documentation

7.3.1 Detailed Description
a struct representing a RELATION object, and wrapping a complex XML fragment like the following:

@verbatim

<relation id="12345" version="1" changeset="54321" user="some-user" uid="66" timestamp="2005-02-28T17:45-
:15Z"> <member type="way" ref="12345" role="outer"> <member type="way" ref="12346" role="inner"> <tag
key="created_by" value="JOSM"> <tag key="tourism" value="camp_site"> </relation>

Examples:

test_osm1.c, test_ osm2.c, and test_osm3.c.
The documentation for this struct was generated from the following file:

» headers/readosm.h

7.4 readosm tag struct Struct Reference

a struct representing a key:value pair, and wrapping an XML fragment like the following:

#include <readosm.h>

Data Fields

+ const char x key

the KEY
« const char * value

the VALUE
7.4.1 Detailed Description
a struct representing a key:value pair, and wrapping an XML fragment like the following:
@verbatim

<tag key="key-value" value="some-value">

Examples:

test_osmi.c.
The documentation for this struct was generated from the following file:

* headers/readosm.h

7.5 readosm way struct Struct Reference

a struct representing a WAY object, and wrapping a complex XML fragment like the following:

#include <readosm.h>

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

7.5 readosm_way_struct Struct Reference 17

Collaboration diagram for readosm_way_struct:

readosm_tag_struct

3

|tags
|

readosm_way_struct

Data Fields

» const long long id

WAY-ID (expected to be a unique value)
+ const int version

object version
» const long long changeset

ChangeSet ID.
» const char * user

name of the User defining this WAY
« const int uid

corresponding numeric UserlD
+ const char * timestamp

when this WAY was defined
» const int node_ref_count

number of referenced NODE-IDs (may be zero)
» const long long * node_refs

array of NODE-IDs (may be NULL)
» constint tag_count

number of associated TAGs (may be zero)
+ const readosm_tag * tags

array of TAG objects (may be NULL)
7.5.1 Detailed Description

a struct representing a WAY object, and wrapping a complex XML fragment like the following:

@verbatim

<way id="12345" version="1" changeset="54321" user="some-user" uid="66" timestamp="2005-02-28T17:45:15-
Z"> <nd ref="12345"> <nd ref="12346"> <nd ref="12347"> <tag key="created by" value="JOSM"> <tag
key="tourism" value="camp_site"> </way>

Examples:

test_osmi.c, test_osm2.c, and test_osm3.c.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

18 Data Structure Documentation

The documentation for this struct was generated from the following file:

* headers/readosm.h

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 8

File Documentation

8.1 headers/readosm.h File Reference

Function declarations and constants for ReadOSM library.

Data Structures

« struct readosm_tag_struct

a struct representing a key:value pair, and wrapping an XML fragment like the following:
« struct readosm_node_struct

a struct representing a NODE object, and wrapping a complex XML fragment like the following:
« struct readosm_way_struct

a struct representing a WAY object, and wrapping a complex XML fragment like the following:
« struct readosm_member_struct

a struct representing a RELATION-MEMBER, and wrapping an XML fragment like the following:
« struct readosm_relation_struct

a struct representing a RELATION object, and wrapping a complex XML fragment like the following:

Macros

» #define READOSM_UNDEFINED -1234567890
information is not available

+ #define READOSM_MEMBER_NODE 7361
MemberType: NODE.

 #define READOSM_MEMBER_WAY 6731
MemberType: WAY.

 #define READOSM_MEMBER_RELATION 3671
MemberType: RELATION.

+ #define READOSM_OK 0
No error, success.

 #define READOSM_INVALID_SUFFIX -1
not .osm or .pbf suffix

« #define READOSM_FILE_NOT_FOUND -2
.osm or .pbf file does not exist or is not accessible for reading

+ #define READOSM_NULL_HANDLE -3
Null OSM_handle argument.

+ #define READOSM_INVALID_HANDLE -4

20 File Documentation

Invalid OSM_handle argument.
+ #define READOSM_INSUFFICIENT_MEMORY -5

some kind of memory allocation failure
+ #define READOSM_CREATE_XML_PARSER_ERROR -6

cannot create the XML Parser
» #define READOSM_READ_ ERROR -7

read error
» #define READOSM_XML_ERROR -8

XML parser error.
« #define READOSM_INVALID_PBF HEADER -9

invalid PBF header
« #define READOSM_UNZIP_ERROR -10

unZip error
« #define READOSM_ABORT -11

user-required parser abort

Typedefs

« typedef struct readosm_tag_struct readosm_tag
Typedef for TAG structure.

« typedef struct readosm_node_struct readosm_node
Typedef for NODE structure.

* typedef struct readosm_way_struct readosm_way
Typedef for WAY structure.

* typedef struct
readosm_member_struct readosm_member

Typedef for MEMBER structure.

* typedef struct
readosm_relation_struct readosm_relation

Typedef for RELATION structure.
* typedef int(x readosm_node_callback)(const void xuser_data, const readosm_node *node)

callback function handling NODE objects
« typedef int(x readosm_way_callback)(const void xuser_data, const readosm_way *way)

callback function handling WAY objects
+ typedef int(x readosm_relation_callback)(const void xuser_data, const readosm_relation xrelation)

callback function handling RELATION objects

Functions

+ READOSM_DECLARE int readosm_open (const char xpath, const void **xosm_handle)

Open the .osm or .pbf file, preparing for future functions.
 READOSM_DECLARE int readosm_close (const void xosm_handle)

Close the .osm or .pbf file and release any allocated resource.

+ READOSM_DECLARE int readosm_parse (const void xosm_handle, const void xuser_data, readosm_node-
_callback node_fnct, readosm_way_callback way_fnct, readosm_relation_callback relation_fnct)

Close the .osm or .pbf file and release any allocated resource.

8.1.1 Detailed Description

Function declarations and constants for ReadOSM library.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

8.1 headers/readosm.h File Reference

8.1.2 Typedef Documentation
8.1.2.1 typedef struct readosm_member_struct readosm_member
Typedef for MEMBER structure.

See also

readosm_member_struct

8.1.2.2 typedef struct readosm_node_struct readosm_node
Typedef for NODE structure.

See also

readosm_node_struct

8.1.2.3 typedef struct readosm_relation_struct readosm_relation
Typedef for RELATION structure.

See also

readosm_relation_struct

8.1.2.4 typedef struct readosm_tag_struct readosm_tag
Typedef for TAG structure.

See also

readosm_tag_struct

8.1.2.5 typedef struct readosm_way_struct readosm_way
Typedef for WAY structure.

See also

readosm_way_struct

8.1.3 Function Documentation
8.1.3.1 READOSM_DECLARE int readosm_close (const void « osm_handle)
Close the .osm or .pbf file and release any allocated resource.

Parameters

\ osm_handle \ the handle previously returned by readosm_open()

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

22 File Documentation

Returns

READOSM_OK will be returned on success, otherwise any appropriate error code on failure.

Note

After calling readosm_close() any related resource will be released, and the handle will no longer be valid.

Examples:

test_osmi1.c, test_ osm2.c, and test_osma3.c.

8.1.3.2 READOSM_DECLARE int readosm_open (const char * path, const void ** osm_handle)
Open the .osm or .pbf file, preparing for future functions.

Parameters

path | full or relative pathname of the input file.

osm_handle | an opaque reference (handle) to be used in each subsequent function (return value).

Returns

READOSM_OK will be returned on success, otherwise any appropriate error code on failure.

Note

You are expected to readosm_close() even on failure, so as to correctly release any dynamic memory allocation.

Examples:

test_osmi1.c, test osm2.c, and test_osma3.c.

8.1.3.3 READOSM_DECLARE int readosm_parse (const void = osm_handle, const void * user_data,
readosm_node_callback node_fnct, readosm_way_callback way_fnct, readosm_relation_callback
relation_fnct)

Close the .osm or .pbf file and release any allocated resource.

\param osm_handle the handle previously returned by readosm_open ()

Parameters

user_data | pointer to some user-supplied data struct

node_fnct | pointer to callback function intended to consume NODE objects (may be NULL if processing
NODEs is not an interesting option)

way_fnct | pointer to callback function intended to consume WAY objects (may be NULL if processing
WAYs is not an interesting option)

relation_fnct | pointer to callback function intended to consume RELATION objects (may be NULL if process-
ing RELATIONS is not an interesting option)

Returns

READOSM_OK will be returned on success, otherwise any appropriate error code on failure.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

8.1 headers/readosm.h File Reference

23

Note

After calling readosm_close() any related resource will be released, and the handle will no longer be valid.

Examples:

test osm1.c, test osm2.c, and test_osm3.c.

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

24

File Documentation

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Chapter 9

Example Documentation

9.1 test.osmi.c

test_osm1.c is a simple demonstration tool for OSM file formats.This sample code provides an example of:

» opening the OSM file
* parsing the OSM file, then printing an XML-like notation on the standard output.

+ closing the OSM file when no further operations are required
Here is an example of a typical run:

./test_osml italy.osm >italy-from-xml
or
./test_osml italy.osm.pbf >italy-from-pbf

Please note: the output produced by test_osm1 is usually verbose, so redirecting the standard output to a disk file
is strongly recommended.

*
test_osml.c
libreadosm Sample code

Author: Sandro Furieri a.furieri@lgt.it

N N

Version: MPL 1.1/GPL 2.0/LGPL 2.1

The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.

The Original Code is the ReadOSM library
The Initial Developer of the Original Code is Alessandro Furieri

Portions created by the Initial Developer are Copyright (C) 2012
the Initial Developer. All Rights Reserved.

Contributor(s):

Alternatively, the contents of this file may be used under the terms of
either the GNU General Public License Version 2 or later (the "GPL"), or
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
in which case the provisions of the GPL or the LGPL are applicable instead

N N

26 Example Documentation

of those above. If you wish to allow use of your version of this file only
under the terms of either the GPL or the LGPL, and not to allow others to
use your version of this file under the terms of the MPL, indicate your
decision by deleting the provisions above and replace them with the notice
and other provisions required by the GPL or the LGPL. If you do not delete
the provisions above, a recipient may use your version of this file under
the terms of any one of the MPL, the GPL or the LGPL.

FONN N N N N

#include <stdio.h>
#include "readosm.h"

static int

print_node (const void xuser_data, const readosm_node * node)
{

/%

% printing an OSM Node (callback function)

*

this function is called by the OSM parser for each

NODE object found

R

please note well: the passed pointer corresponds to
a READ-ONLY object; you can can query any node-related
* value, but you cannot alter them.

*

hkkkkkkkkkkhkhkhkhkhhhkhhhhkhkhkhkkhkkkkkkkkokkkkkkkk**

* this didactic sample will simply print the node object
* on the standard output adopting the appropriate OSM XML
* notation

*/
char buf[128];
int 1i;
const readosm_tag =*tag;

#if defined(_WIN32) || defined(__ MINGW32_)
/+ CAVEAT - M$ runtime doesn’t supports $%$11d for 64 bits */
sprintf (buf, "%I64d", node->id);

#else
sprintf (buf, "%11d", node->id);

#endif
printf ("\t<node id=\"%s\"", buf);

/*

* some individual values may be set, or may be not
+ unset values are identified by the READOSM_UNDEFINED
* conventional value, and must be consequently ignored

x/
if (node->latitude != READOSM_UNDEFINED)
printf (" lat=\"%1.7f\"", node->latitude);
if (node->longitude != READOSM_UNDEFINED)
printf (" lon=\"%1.7£\"", node->longitude);
if (node->version != READOSM_UNDEFINED)
printf (" version=\"%d\"", node->version);
1f (node->changeset != READOSM_UNDEFINED)
{
#if defined (_WIN32) || defined(__ MINGW32_)
/* CAVEAT - M$ runtime doesn’t supports %11d for 64 bits */
sprintf (buf, "%$I64d", node->changeset);
#else
sprintf (buf, "%$11d", node->changeset);
#endif
printf (" changeset=\"%s\"", buf);
}
/*

* unset string values are identified by a NULL pointer
* and must be consequently ignored

*/
if (node->user != NULL)
printf (" user=\"%s\"", node->user);
if (node->uid != READOSM_UNDEFINED)
printf (" uid=\"%d\"", node->uid);
if (node->timestamp != NULL)
printf (" timestamp=\"%s\"", node->timestamp);
/*

* the Node object may have its own tag list
* please note: this one is a variable-length list,
* and may be empty: in this case tag_count will be ZERO
*/
if (node->tag_count == 0)
printf (" />\n");
else

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

9.1 test_osmi.c

printf (">\n");
for (1 = 0; 1 < node->tag_count; i++)
{
/+ we’ll now print each <tag> for this node x/
tag = node->tags + 1i;
printf ("\t\t<tag k=\"%s\" v=\"%s\" />\n", tag->key,
tag->value);
}
printf ("\t</node>\n");
}
return READOSM_OK;

static int

print_way (const void xuser_data, const readosm_way * way)
{

/%

% printing an OSM Way (callback function)

*

this function is called by the OSM parser for each

WAY object found

S

please note well: the passed pointer corresponds to
a READ-ONLY object; you can can query any way-related
* value, but you cannot alter them.

*

hkkkkkkkkkkkhhkhkhkhkhhkhhkkkkkkhkkhkkkkkkkkkkkkkk**

* this didactic sample will simply print the way object
% on the standard output adopting the appropriate OSM XML
* notation

*/
char buf[128];
int 1i;
const readosm_tag =*tag;

#if defined (_WIN32) || defined(__ MINGW32_)
/+ CAVEAT - M$ runtime doesn’t supports $%$11d for 64 bits */
sprintf (buf, "%I64d", way->id);

#else
sprintf (buf, "%11d", way->id);

#endif
printf ("\t<way id=\"%s\"", buf);

/%

* some individual values may be set, or may be not

+ unset values are identified by the READOSM_UNDEFINED
* conventional value, and must be consequently ignored
*/

if (way->version != READOSM_UNDEFINED)
printf (" version=\"%d\"", way->version);
if (way—->changeset != READOSM_UNDEFINED)
{
#if defined (_WIN32) || defined(__ MINGW32_)

/* CAVEAT - M$ runtime doesn’t supports %11d for 64 bits
sprintf (buf, "%I64d", way->changeset);

#else
sprintf (buf, "%$11d", way->changeset);
#endif
printf (" changeset=\"%s\"", buf);
}
/*

* unset string values are identified by a NULL pointer
* and must be consequently ignored

*/
1f (way->user != NULL)
printf (" user=\"%s\"", way->user);
if (way->uid != READOSM_UNDEFINED)
printf (" uid=\"%d\"", way->uid);
1f (way->timestamp != NULL)
printf (" timestamp=\"%s\"", way->timestamp);
/*

* the Way object may have a noderefs-list and a tag-1list
* please note: these are variable-length lists, and may
* be empty: in this case the corresponding item count

* will be ZERO

1f (way->tag_count == 0 && way->node_ref_count == 0)
printf (" />\n");
else
{
printf (">\n");
for (1 = 0; 1 < way->node_ref_count; i++)

{

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

28 Example Documentation

/+* we’ll now print each <nd ref> for this way */
#if defined(_WIN32) || defined(__ MINGW32_)
/+ CAVEAT - M$ runtime doesn’t supports %$11d for 64 bits */
sprintf (buf, "%I64d", x(way->node_refs + 1));
#else
sprintf (buf, "%$11d", = (way->node_refs + 1i));
#endif
printf ("\t\t<nd ref=\"%s\" />\n", buf);

for (1 = 0; 1 < way->tag_count; i++)

/* we’ll now print each <tag> for this way */

tag = way->tags + 1i;

printf ("\t\t<tag k=\"%s\" v=\"%s\" />\n", tag->key,
tag->value);

}
printf ("\t</way>\n");
}
return READOSM_OK;

static int
print_relation (const void xuser_data, const readosm_relation =
relation)

/%
* printing an OSM Relation (callback function)

* this function is called by the OSM parser for each
RELATION object found

*

please note well: the passed pointer corresponds to
a READ-ONLY object; you can can query any relation-related
value, but you cannot alter them.

* ok ok

*

*

E R R R R

* this didactic sample will simply print the relation object
* on the standard output adopting the appropriate OSM XML
* notation

*/
char buf[128];
int 1i;
const readosm_member xmember;
const readosm_tag =*tag;

#if defined(_WIN32) || defined(__ MINGW32_)
/* CAVEAT - M$ runtime doesn’t supports %$11d for 64 bits x/
sprintf (buf, "%I64d", relation->id);

#else
sprintf (buf, "%11d", relation->id);

#endif
printf ("\t<relation id=\"%s\"", buf);

/%

* some individual values may be set, or may be not
* unset values are identified by the READOSM_UNDEFINED
* conventional value, and must be consequently ignored

*/
if (relation->version != READOSM_UNDEFINED)
printf (" version=\"%d\"", relation->version);
1f (relation->changeset != READOSM_UNDEFINED)
{
#if defined(_WIN32) || defined(__ MINGW32__)
/* CAVEAT - M$ runtime doesn’t supports %11d for 64 bits =/
sprintf (buf, "%$I64d", relation->changeset);
#else
sprintf (buf, "%11d", relation->changeset);
#endif
printf (" changeset=\"%s\"", buf);
}
/*

* unset string values are identified by a NULL pointer
* and must be consequently ignored
*/
it (relation—->user != NULL)
printf (" user=\"%s\"", relation->user);
if (relation->uid != READOSM_UNDEFINED)
printf (" uid=\"%d\"", relation->uid);
1f (relation->timestamp != NULL)
printf (" timestamp=\"%s\"", relation->timestamp);

/*

* the Relation object may have a member-list and a tag-list
* please note: these are variable-length lists, and may

* be empty: in this case the corresponding item count

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

9.1 test_osmi.c

29

* will be ZERO

*/
if (relation->tag_count == 0 && relation->member_count
== 0)
printf (" />\n");
else
{
printf (">\n");
for (1 = 0; 1 < relation->member_count; i++)
{
/+ we’ll now print each <member> for this way x/
member = relation->members + 1i;
#if defined(_WIN32) || defined(__MINGW32__)
/+ CAVEAT - M$ runtime doesn’t supports %11d for 64 bits */
sprintf (buf, "%I64d", member->id);
#else
sprintf (buf, "%11d", member->id);
#endif
/+ any <member> may be of "node", "way" or "relation" type =/
switch (member->member_type)
{
case READOSM_MEMBER_NODE:
printf ("\t\t<member type=\"node\" ref=\"%s\"", buf);
break;
case READOSM_MEMBER_WAY:
printf ("\t\t<member type=\"way\" ref=\"%s\"", buf);
break;
case READOSM_MEMBER_RELATION:
printf ("\t\t<member type=\"relation\" ref=\"%s\"", buf);
reak;
default:
printf ("\t\t<member ref=\"%s\"", buf);
break;
Vi
if (member->role != NULL)
printf (" role=\"%s\" />\n", member->role);
else
printf (" />\n");
}
for (1 = 0; 1 < relation->tag_count; i++)
{
/% we’ll now print each <tag> for this way */
tag = relation->tags + 1i;
printf ("\t\t<tag k=\"%s\" v=\"%s\" />\n", tag—>key,
tag->value) ;
}
printf ("\t</relation>\n");
}
return READOSM_OK;
}
int

main (int argc, char xargv([])
{
const void *osm_handle;
int ret;

if (argc != 2)
{
fprintf (stderr, "usage: test_osml path—to—OSM—file\n");
return -1;

/%
x STEP #1: opening the OSM file
% this can indifferently be an OSM XML encoded file (.osm)
%+ or an OSM Protocol Buffer encoded file (.pbf)
* the library will transparently perform any required
* action in both cases.
*/
ret = readosm_open (argv[l], &osm_handle);
if (ret != READOSM_OK)
{
fprintf (stderr, "OPEN error: %d\n", ret);
goto stop;
}
/*
x STEP #2: parsing the OSM file
* this task is unbelievably simple
*
* you are simply required to pass the appropriate
* pointers for callback funtions respectively intended
* to process Node-objects, Way-objects and Relation-objects
*
* the library will then parse the whole input file, calling

*

the appropriate callback handling function for each OSM object

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

30 Example Documentation

x found: please see the callback functions implementing code
* to better understand how it works
*
* important notice: in this first example we’ll not use at
* all the USER_DATA pointer. so the second arg will simply
* be (const void *)0 [i.e. NULL]
*/
ret =
readosm_parse (osm_handle, (const void %) 0, print_node,
print_way,
print_relation);
if (ret != READOSM_OK)
{
fprintf (stderr, "PARSE error: %d\n", ret);
> stop;
}
fprintf (stderr, "Ok, OSM input file successfully parsed\n");
stop:
/*

* STEP #3: closing the OSM file
* this will release any internal memory allocation
*/

readosm_close (osm_handle);

return 0;

9.2 test osm2.c

test_osm2.c is another simple demonstration tool for OSM file formats.This sample code provides an example of:

» opening the OSM file

 parsing the OSM file, thus collecting and printing simple statistics about NODEs, WAYs and RELATIONs
« error handling

+ closing the OSM file when no further operations are required

Here is a typical usage example, parsing an OSM XML file (.osm):

./test_osm2 test.osm

Longitude range: 8.7889611 / 9.4145124
Latitude range: 41.3870658 / 42.8070090
Nodes : 1060
tags: 1052
Ways : 112
ndref: 785
tags: 241
Relations : 13
member.nodes : 16
member.ways : 44
member.relations: 6
tags: 199

Here is another example, this time parsing a .pbf (Protocol Buffer) OSM file:

./test_osm2 test.osm

Longitude range: 8.5856726 / 10.2898441
Latitude range: 41.3332843 / 43.5406952
Nodes : 8000

tags: 3162
Ways : 12336

ndref: 221627
tags: 24904

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

9.2 test_ osm2.c

Relations : 1520
member.nodes : 2952
member.ways : 2741

member.relations: 30
tags: 10081

*

test_osm2.c
libreadosm Sample code

Author: Sandro Furieri a.furieri@lqgt.it

e

Version: MPL 1.1/GPL 2.0/LGPL 2.1

The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.

The Original Code is the ReadOSM library
The Initial Developer of the Original Code is Alessandro Furieri

Portions created by the Initial Developer are Copyright (C) 2012
the Initial Developer. All Rights Reserved.

Contributor(s):

Alternatively, the contents of this file may be used under the terms of
either the GNU General Public License Version 2 or later (the "GPL"), or
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
in which case the provisions of the GPL or the LGPL are applicable instead
of those above. If you wish to allow use of your version of this file only
under the terms of either the GPL or the LGPL, and not to allow others to
use your version of this file under the terms of the MPL, indicate your
decision by deleting the provisions above and replace them with the notice
and other provisions required by the GPL or the LGPL. If you do not delete
the provisions above, a recipient may use your version of this file under
the terms of any one of the MPL, the GPL or the LGPL.

N N N N T N N

#include <stdio.h>
#include "readosm.h"

struct osm_statistics
{
/* a struct intended to collect general OSM statistics */
int node_count;
int node_tag_count;
int way_count;
int way_ndref_count;
int way_tag_count;
int relation_count;
int relation_member_node_count;
int relation_member_way_count;
int relation_member_relation_count;
int relation_tag_count;
double min_longitude;
double max_longitude;
double min_latitude;
double max_latitude;

bi

static int

node_stats (const void *user_data, const readosm_node * node)
{

/+ updating OSM Node stats (callback function)x/

/* casting the USER_DATA pointer to osm_statistics */
struct osm_statistics xstats = (struct osm_statistics) user_data;

stats->node_count++;

stats->node_tag_count += node->tag_count;

if (node->latitude != READOSM_UNDEFINED)
{

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

32

Example Documentation

1f (node->latitude > stats->max_latitude)
stats->max_latitude = node->latitude;
if (node->latitude < stats->min_latitude)
stats->min_latitude = node->latitude;
}
if (node->longitude != READOSM_UNDEFINED)
{
if (node->longitude > stats->max_longitude)
stats->max_longitude = node->longitude;
1f (node->longitude < stats->min_longitude)
stats->min_longitude = node->longitude;
}
return READOSM_OK;

static int

way_stats (const void xuser_data, const readosm_way * way)
{

/+ updating OSM Way stats (callback function)*/

/+ casting the USER_DATA pointer to osm_statistics =/

struct osm_statistics xstats = (struct osm_statistics %) user_data;

stats—>way_count++;

stats->way_ndref_count += way->node_ref_ count;
stats->way_tag_count += way->tag_count;

return READOSM_OK;

static int
relation_stats (const void user_data, const readosm_relation =*
relation)
{
/+ updating OSM Relation stats (callback function) x/
int 1i;
const readosm_member *member;

/* casting the USER_DATA pointer to osm_statistics */

struct osm_statistics xstats = (struct osm_statistics) user_data;

stats->relation_count++;

for (i = 0; i < relation->member_count; i++)
{
member = relation->members + 1i;
switch (member->member_type)

READOSM_MEMBER_NODE:
stats->relation_member_node_count++;
break;

se READOSM_MEMBER_WAY:
stats->relation_member_way_count++;
break;

se READOSM_MEMBER_RELATION:
stats->relation_member_relation_count++;
break;

}i

}
stats->relation_tag_count += relation->tag_count;
return READOSM_OK;

int
main (int argc, char xargv([])
{
const void xosm_handle;
int ret;
struct osm_statistics infos;

/% initializing the statistics struct =/

infos.node_count = 0;
infos.node_tag_count = 0;
infos.way_count = 0;

infos.way_ndref_count 0;

infos.way_tag_count = 0;

infos.relation_count = 0;
infos.relation_member_node_count = 0;
infos.relation_member_way_count = 0;
infos.relation_member_relation_count = 0;
infos.relation_tag_count = 0;
infos.min_longitude = 180.0;
infos.max_longitude = -180.0;
infos.min_latitude = 90.0;
infos.max_latitude = -90.0;

if (argc != 2)

{
fprintf (stderr, "usage: test_osm2 pathftofoSMffile\n");

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

9.3 test_osm3.c 33

*

STEP #1: opening the OSM file

this can indifferently be an OSM XML encoded file
or an OSM Protocol Buffer encoded file (.pbf)

the library will transparently perform any required
action in both cases.

*

(.osm)

* ok ok

*/

ret readosm_open (argv([1l]
if (ret != READOSM_OK)
{

&osm_handle) ;

fprintf (stderr, "OPEN error: %d\n", ret);
goto stop;

/*

*

STEP #2: parsing the OSM file
this task is unbelievebly simple

you are simply required to pass the appropriate
pointers for callback funtions respectively intended
to process Node-objects, Way-objects and Relation-objects

* ok ko

*

the library will then parse the whole input file, calling

the appropriate callback handling function for each OSM object
found: please see the callback functions implementing code

to better understand how it works

I

*

important notice: this second example is mainly focused on
using the USER_DATA pointer. in this example we’ll pass the
address of the osm_statistics struct so to gather some
general infos.

* ok ok

*

*/

ret
readosm_parse (osm_handle, &infos,
relation_stats);

!= READOSM_OK)

node_stats, way_stats,

if (ret

{
fprintf (stderr,
goto stop;

"PARSE error: %d\n", ret);
}

/* printing OSM statistics =/

printf ("Longitude range: %1.7f / $1.7f\n", infos.min_longitude,
infos.max_longitude) ;
printf ("Latitude range: %1.7f / %$1.7f\n\n", infos.min_latitude,
infos.max_latitude);
printf ("Nodes : %d\n", infos.node_count);
printf (" tags: %d\n\n", infos.node_tag_count);
printf ("Ways : %d\n", infos.way_count);
printf (" ndref: %d\n", infos.way_ndref_count);
printf (" tags: %d\n\n", infos.way_tag_count);
printf ("Relations : %d\n", infos.relation_count);
printf (" member.nodes %d\n", infos.relation_member_node_count) ;
printf (" member.ways %d\n", infos.relation_member_way_count) ;
printf (" member.relations: %d\n", infos.relation_member_relation_count);
printf (" tags: %d\n", infos.relation_tag_count);
stop:
/%
x STEP #3: closing the OSM file

* this will release any internal
*/

readosm_close
0;

(osm_handle) ;
return

9.3 test.osm3.c

test_osm3.c shows how to intentionally abort the parser.Here is a typical usage example, parsing an OSM XML file

(.osm):

./test_osm3 test.osm 10
node#1
node#2
node#3
node#4
node#5
node#6

memory allocation

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

34 Example Documentation

node#7

node#8

node#9

node#10

PARSING ABORTED

Here is another example, this time parsing a .pbf (Protocol Buffer) OSM file:

./test_osm3 test.osm 5
node#1l

node#2

node#3

node#4

node#5

PARSING ABORTED

*
test_osm3.c
libreadosm Sample code

Author: Sandro Furieri a.furieri@lgt.it

N U

Version: MPL 1.1/GPL 2.0/LGPL 2.1

The contents of this file are subject to the Mozilla Public License Version
1.1 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.mozilla.org/MPL/

Software distributed under the License is distributed on an "AS IS" basis,
WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
for the specific language governing rights and limitations under the
License.

The Original Code is the ReadOSM library
The Initial Developer of the Original Code is Alessandro Furieri

Portions created by the Initial Developer are Copyright (C) 2012
the Initial Developer. All Rights Reserved.

Contributor(s) :

Alternatively, the contents of this file may be used under the terms of
either the GNU General Public License Version 2 or later (the "GPL"), or
the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
in which case the provisions of the GPL or the LGPL are applicable instead
of those above. If you wish to allow use of your version of this file only
under the terms of either the GPL or the LGPL, and not to allow others to
use your version of this file under the terms of the MPL, indicate your
decision by deleting the provisions above and replace them with the notice
and other provisions required by the GPL or the LGPL. If you do not delete
the provisions above, a recipient may use your version of this file under
the terms of any one of the MPL, the GPL or the LGPL.

N N N N N

#include <stdio.h>
#include <stdlib.h>

#include "readosm.h"

struct osm_helper

{

/+ an user defined struct =/
int read_count;
int stop_limit;

}i

static int
eval_abort (struct osm_helper xhelper)
{
/* testing the stop limit =/
1f (helper->read_count > helper->stop_limit)
return 1;
return 0;

}

static int

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

9.3 test_osm3.c

35

parse_node (const void xuser_data, const readosm_node x node)

{

/* parsing a Node (callback function) /

/* casting the USER_DATA pointer to osm_helper =/
struct osm_helper xhelper = (struct osm_helper x) user_data;

helper->read_count++;
i1t (eval_abort (helper)
return READOSM_ABORT;
printf ("Node#%d\n", helper->read_count);
return READOSM_OK;

static int
parse_way (const void xuser_data, const readosm_way * way)

{
/* parsing a Way (callback function) =/

/+ casting the USER_DATA pointer to osm_helper =/
struct osm_helper xhelper = (struct osm_helper) user_data;

helper—->read_count++;
it (eval_abort (helper)
return READOSM_ABORT;
printf ("Way#%d\n", helper->read_count);
return READOSM_OK;

static int

parse_relation (const void xuser_data, const readosm_relation =*
relation)

{

/* parsing a Relation stats (callback function)x/

/* casting the USER_DATA pointer to osm_helper =/
struct osm_helper xhelper = (struct osm_helper =*) user_data;

helper->read_count++;
if (eval_abort (helper)
return READOSM_ABORT;
printf ("Relation#%d\n", helper->read_count) ;
return READOSM_OK;

int
main (int argc, char xargv([])
{
const void *osm_handle;
int ret;
struct osm_helper helper;

/% initializing the helper struct =/
helper.read_count = 0;
helper.stop_limit = 0;

1f (argc != 3)
{

fprintf (stderr, "usage: test_osm3 path-to-OSM limit\n");

return -1;

}

/* setting the stop limit x/
helper.stop_limit = atoi (argv([2]);

*

STEP #1: opening the OSM file
this can indifferently be an OSM XML encoded file (.osm)

*

* or an OSM Protocol Buffer encoded file (.pbf)
* the library will transparently perform any required
* action in both cases.
*/
ret = readosm_open (argv[l], &osm_handle);
if (ret != READOSM_OK)
{
fprintf (stderr, "OPEN error: %d\n", ret);
goto stop;
}
/*

*

STEP #2: parsing the OSM file
* this task is unbelievably simple

you are simply required to pass the appropriate
pointers for callback funtions respectively intended
to process Node-objects, Way-objects and Relation-objects

* ok ko

*

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

36 Example Documentation

*

the library will then parse the whole input file, calling

the appropriate callback handling function for each OSM object
found: please see the callback functions implementing code

to better understand how it works

R

*

important notice: this second example is mainly focused on
using the USER_DATA pointer. in this example we’ll pass the
address of the osm_statistics struct so to gather some
general infos.

* ok ok

*/
ret =
readosm_parse (osm_handle, &helper, parse_node, parse_way,
parse_relation);
1f (ret != READOSM_OK)
{

fprintf (stderr, "PARSE error: %d\n", ret);
goto stop;

stop:
/%
* STEP #3: closing the OSM file
* this will release any internal memory allocation
*/
readosm_close (osm_handle);
return 0;

Generated on Sun Nov 11 2012 18:19:31 for readosm by Doxygen

Index

headers/readosm.h, 19

readosm.h
readosm_close, 21
readosm_member, 21
readosm_node, 21
readosm_open, 22
readosm_parse, 22
readosm_relation, 21
readosm_tag, 21
readosm_way, 21
readosm_close
readosm.h, 21
readosm_member
readosm.h, 21
readosm_member_struct, 13
readosm_node
readosm.h, 21
readosm_node_struct, 13
readosm_open
readosm.h, 22
readosm_parse
readosm.h, 22
readosm_relation
readosm.h, 21
readosm_relation_struct, 15
readosm_tag
readosm.h, 21
readosm_tag_struct, 16
readosm_way
readosm.h, 21
readosm_way_struct, 16

	Main Page
	Introduction

	About Open Street Map datasets
	Node
	Way
	Relation

	Open Street Map file formats
	XML (.osm) files
	Protocol Buffer (.pbf) files
	ReadOSM basic architecture

	ReadOSM basic architecture
	Data Structure Index
	Data Structures

	File Index
	File List

	Data Structure Documentation
	readosm_member_struct Struct Reference
	Detailed Description

	readosm_node_struct Struct Reference
	Detailed Description

	readosm_relation_struct Struct Reference
	Detailed Description

	readosm_tag_struct Struct Reference
	Detailed Description

	readosm_way_struct Struct Reference
	Detailed Description

	File Documentation
	headers/readosm.h File Reference
	Detailed Description
	Typedef Documentation
	readosm_member
	readosm_node
	readosm_relation
	readosm_tag
	readosm_way

	Function Documentation
	readosm_close
	readosm_open
	readosm_parse

	Example Documentation
	test_osm1.c
	test_osm2.c
	test_osm3.c

