
RasterLite Manual 1 v. 1.0

RasterLite
a very simple C library [and related management tools]

implementing an efficient storage solution for huge raster data sources based on
SQLite + SpatiaLite Spatial DBMS

Index of contents:
 1 Introduction

 1.1 Raster foundations page 2
 1.2 Image compression page 4
 1.3 Commonly used image formats page 4
 1.4 Tiling page 9
 1.5 Pyramids page 10
 1.6 DBMS table layout page 12

 2 RasterLite's utility tools
 2.1 rasterlite_load page 16
 2.2 rasterlite_pyramid page 18
 2.3 rasterlite_topmost page 19
 2.4 rasterlite_tool page 20
 2.5 rasterlite_grid page 21

 3 The RasterLite C API
 3.1 Opening the data source page 23
 3.2 Error handling page 23
 3.3 Image generation page 24
 3.4 GeoTIFF export page 25
 3.5 Extent and SRID page 26
 3.6 Miscellaneous functions page 27

RasterLite Manual 2 v. 1.0

Introduction: refreshing some useful basic notions

Surely you already know all this: this one simply is a very quick and fast reminder, to better fix the
operative context.

A very commonly used kind of GIS data source is represented by raster imagery: this identifies
some kind of georeferenced digital image, i.e. explicitly stating how and where the image has to be
placed over a conventional map. In other words, in a georeferenced raster image, each single pixel
explicitly corresponds to some map coordinate.

There are two commonly used ways to georeference a raster image:
• using the canonical GeoTIFF format: this allows to embed any information belonging to the

spatial reference system and georeferencing directly within the image itself.
• using an ESRI world file, i.e. a small text file adopting a well known format: this is by far

less desirable, because the georeferencing infos are store into a separate file (and not within
the image itself), and any spatial reference system explicit setting is unsupported.

• anyway, this one isn't a real issue, because the geotifcp tool allows you to get a true
GeoTIFF from an ESRI world file in a very simple way.

Raster imagery foundations:

Technically speaking a raster image is a two-dimensional rectangular matrix of individual pixels.
Each pixel corresponds (directly or indirectly) to some well defined color. And colors are defined
as RGB values, i.e. as a triplet of values indicating the Red, Green and Blue relative intensity.
Most usually an 8-bit color depth is used, and so a 0 value corresponds to “completely off”, i.e.
black, and 255 to “completely on”, i.e. pure red or pure green or pure blue.
Any real color can be encoded using an appropriate RGB value: an 8-bit color depth allows RGB to
represent 16,777,216 different colors, i.e. the so called true color commonly used by digital
cameras, screens, color printers and other well known digital imagery equipments.
This is also known as the RGB color space (commonly used on color digital photography): each
pixel requires 3 bytes, i.e. 24 bits to be represented into this color space.

RGB hex value Red Green Blue Color Example
0x000000 0 0 0 Black
0xFFFFFF 255 255 255 White
0x808080 128 128 128 Medium Gray
0xD0D0D0 208 208 208 Light Gray
0xFF0000 255 0 0 Red
0x00FF00 0 255 0 Green
0x0000FF 0 0 255 Blue
0xFFFF00 255 255 0 Yellow
0x00FFFF 0 255 255 Cyan
0xFF00FF 255 0 255 Magenta

RasterLite Manual 3 v. 1.0

Please note: as you can easily notice from the above table, a full 256-levels gray scale can always
be represented using a single channel, because any gray value always has identical values for Red,
Green and Blue. And this defines the GRAYSCALE color space (commonly used on black and
white digital photography): each pixel requires a single byte, i.e. 8 bits to be represented into this
color space.

In the MONOCHROME color space only two colors are supported (usually, black and white):
each pixel requires a single bit, i.e. one single byte can store 8 pixel. If you are wondering about a
common example for monochrome (aka bi-level) images, keep in your hands the latest fax you've
received, or a page just printed from your black and white laser printer.

As an alternative way, we can define a PALETTE-based color space. The palette stores a limited
set of RGB values (usually, max. 256), and consequently each pixel doesn't requires any longer a
full RGB value: it will simply store a palette index, thus indirectly retrieving the corresponding
RGB value: consequently, each pixel requires a single byte, i.e. 8 bits to be represented into this
color space.

Quite obviously, a lot of different color spaces exists: but they aren't too much widespread, so we
can ignore them at all.

Color Space Single Pixel Size Notes

RGB 3 bytes
24 bits

True color
16 million colors

GRAYSCALE 1 byte
8 bits 256 levels gray scale

MONOCHROME 1 bit Bi-level
Black or white [no half tones]

PALETTE 1 byte
8 bits 256 colors palette

Compression algorithms foundations:

Raster imagery usually require strong amounts of storage. And consequently, using detailed optimal
resolution GIS raster imagery representing some extended territory, typically requires very huge
and really impressive amounts of storage.

In order to reduce the amount of disk storage required by raster imagery, several very specific and
commonly used compression algorithms can be applied.

But first to try compressing your raster imagery, keep well in your mind that choosing the correct
color space can help you avoiding to waste unnecessarily your precious and limited disk space.
Simply storing as RGB an image that can harmlessly be stored as GRAYSCALE or PALETTE will
unusefully waste 3-times the actual size you really need.
And storing as RGB a MONOCHROME image will waste 24-times the actual size you really need.

RasterLite Manual 4 v. 1.0

Loseless compression:

A loseless compression represents a completely reversible operation. The result of the compression
actually requires only a small fraction of the original space, but you can always get back the original
image, with no loss of information at all.

A typical example for loseless compression is represented by the well known zipfile algorithm.
You can zip and then unzip a single file (or a whole folder) as many times you wish: you always
will get the same identical file from where you started, with no difference at all.

Lossy compression:

A lossy compression represents an irreversible operation. You never can get back an uncompressed
image exactly identical to the original one, because some kind of information suppression will be
introduced anyway during the compression process.
Typically, lossy compression algorithms can squeeze your images more much better than loseless
algorithms does, but at the cost of some irreversible information suppression (and quality
degradation).

And lossy compression algorithms enables you to select a variable compression factor.
You can choose to apply a strong (very aggressive) compression, in order to minimize the required
space, but at the expense of a very modest quality.
Or you can alternatively choose to apply a moderate (not so aggressive) compression, sacrificing
some extra space, but obtaining a good or excellent quality (i.e. not the slightest artifact will be
perceived by the naked eye of an human observer).

Commonly used image formats:

TIFF (T agged I mage F ile F ormat)

This actually represents a quite complex family of different formats.
GeoTIFF represents a TIFF-based superset (fully compatible) allowing to store georeferencing
infos directly into the image file itself.
The TIFF sub-formats most commonly used are:

• RGB: true color uncompressed images
• GRAYSCALE: 256 gray tones uncompressed images
• MONOCHROME: bi-level uncompressed images

◦ images of this kind can be compressed in a very efficient way applying the CCITT
FAX-3 or CCITT FAX-4 algorithms. Both them implement a loseless compression.

TIFF images tends to requires huge amounts of disk storage, but are quite widespread used (namely
as GeoTIFFs) because they allow to fully preserve the original resolution and quality.

RasterLite Manual 5 v. 1.0

JPEG (J oint P hotographic E xperts G roup)

This format always implements a lossy compression, based on DCT (Discrete Cosine Transform)
and Hufman's encoding.
Compression factor is selectable as a quality factor, this ranging from Q=90 (smoothly compressed,
but showing excellent quality) and Q=20 (strongly compressed, but showing infamous quality).
Reasonably quality factors to be used can be:

• Q=90: very good quality, moderate compression
• Q=75: good quality, optimal compression
• Q=60 or Q=50: moderate quality, strong compression
• any other setting (Q < 50) will produce very poor results

The JPEG supported sub-formats are:
• RGB: true color compressed (lossy) images; this is the standard format adopted by the

digital photography market.
• GRAYSCALE: 256 gray tones compressed (lossy) images: this exactly corresponds to old-

fashioned black and white pictures.

PNG (P ortable N etwork G raphics)

This format always implements a loseless compression, based on filtering and DEFLATE, an
algorithm very closely related to the well known zip.
The PNG commonly supported sub-formats are:

• RGB: true color compressed (loseless) images. please note: such a loseless compression
will preserve the full original image quality, but cannot achieve the compression efficiency
allowed by JPEG.

• GRAYSCALE: 256 gray tones compressed (loseless) images. please note: in this case too
the original image quality will be fully preserved, but compression efficiency is by far worst
than the one you can obtain using JPEG.

• PALETTE: 256 colors palette based, (loseless) compressed images.

GIF (G raphics I nterchange F ormat)

This format was quite hated during the latest year, because the LZW (Lempel-Ziv-Welch) loseless
compression algorithm it applies was patent covered: but in 2003-2004 any pending patent
definitively expired.
The GIF only supports the PALETTE color space: i.e. 256 colors palette based, (loseless)
compressed images.
Compression efficiency of GIF compared with PNG-PALETTE widely depends upon the image
itself: sometimes PNG is better, but other times GIF may represent a best solution.

RasterLite Manual 6 v. 1.0

WAVELET compression

This format always implements a lossy compression, based on Wavelet Transform. There are
several flavors of this algorithm, and many of them are patent covered, so they are completely
unavailable for open source implementations.
rasterlite own implementation for WAVELET compression is based on the epsilon library
originally developed by Alexander Simakov, <xander@entropyware.info>

Compression factor is selectable as a compression ratio, this ranging from Q=25 (smoothly
compressed, but showing excellent quality) and Q=150 (strongly compressed, but showing
infamous quality). Reasonably quality factors to be used can be:

• Q=25: very good quality, moderate compression
• Q=50: good quality, optimal compression
• Q=100: moderate quality, strong compression
• any other setting (Q > 100) will produce very poor results

The WAVELET supported sub-formats are:
• RGB: true color compressed (lossy) images.
• GRAYSCALE: 256 gray tones compressed (lossy) images.

RasterLite Manual 7 v. 1.0

JPEG vs WAVELET

JPEG and WAVELET are conceptually similar algorithms, both supporting exactly the same color
spaces and implementing a lossy compression.
But they are based on completely different mathematics, so they produce quite different visual
effects.
As a rule of the thumb, at low compression factors they are quite identical: but at stronger
compression factors JPEG is prone to show big squared block artifacts: WAVELET tends to show
blurry artifacts. And WAVELET has the amazing capability to squeeze much more the compressed
image, if you are so crazy to select some very high compression factor.

JPEG WAVELET

aggressive compression: you can easily notice
big squared artifacts.

aggressive compression: the image softens, but
doesn't show any evident artifact

very aggressive compression: the squared
artifacts are really evident and annoying.

very aggressive compression: the image is now
too soft and shows a very noticeable flou effect

RasterLite Manual 8 v. 1.0

Color spaces and corresponding image formats

The following table shows allowable transformations between uncompressed TIFF and other
compressed image formats:

from original TIFF to JPEG to PNG to GIF to WAVELET
RGB
uncompressed

RGB
lossy compression

optimal compression,
good quality

RGB
loseless compression

not at all an astonishing
compression, but quality
is fully preserved

Not allowed
will produce an
unacceptable color
space reduction

RGB
lossy compression

optimal compression,
good quality

GRAYSCALE
uncompressed

GRAYSCALE
lossy compression

optimal compression,
good quality

GRAYSCALE
loseless compression

not at all an astonishing
compression, but quality
is fully preserved

PALETTE
loseless compression

ill-advised

GRAYSCALE
lossy compression

optimal compression,
good quality

MONOCHROME
uncompressed, or FAX-3 / FAX-4
loseless compressed

GRAYSCALE
lossy compression

ill-advised

GRAYSCALE
loseless compression

ill-advised

PALETTE
loseless compression

ill-advised

GRAYSCALE
lossy compression

ill-advised

PALETTE
max. 256 colors
uncompressed

RGB
lossy compression

ill-advised

PALETTE
loseless compression

good compression,
quality is fully preserved

PALETTE
loseless compression

good compression,
quality is fully preserved

RGB
lossy compression

ill-advised

Please note: compressed images require less disk space to be stored. But once you load them in
memory, they will immediately be expanded to their original full size. And usually, a full RGB
color space is used internally, so lots and lots of RAM are required in order to process raster
imagery.

RasterLite Manual 9 v. 1.0

Tiling:

Raster imagery commonly used in GIS consist in really huge images: dimensions of 15,000 x
10,000 pixels are not at all uncommon: such a raster requires about 450 MB of memory, to be
displayed over the screen. Handling so wide images implies several undesirable side effects:

• a lot of your precious RAM will be used. If your system merely has 512 MB of RAM, using
so much RAM may produce a severe performance handicap.

• transferring a so huge amount of data from disk to RAM imposes an heavy load on the I/O
sub-system: and I/O requires a long time to be completed, even if you are using a fast hard
disk.

• If you try using some compression algorithm, you'll surely reduce the I/O load, and this may
imply a strong benefit. But you are now imposing a very strong computational load on the
CPU, because compression/decompression algorithms require a lot of calculation to be
performed.

So, a very useful solution is the one to implement some kind of tiling. We can split the original
huge image into several smaller images (the individual tiles). Now we can reconstruct anyway the
full image (simply reassembling together any required tile), and we can now selectively load only
the few tiles we really need at each time.

This one is a simple but effective way allowing to dramatically reduce the RAM requirements; and
also has strong benefits in I/O terms. And decoding some small image requires few calculation, so
the CPU overhead will not be so prohibitive anyway.

As from my own tests, using any modern CPU [Pentium4 and most recent ones] the benefits you
can get by reducing the I/O load are by far biggest than the CPU overhead due to the task of
decoding such compressed images.

RasterLite Manual 10 v. 1.0

Pyramids:

Raster images presents another hard-to-solve problem. Namely they can be displayed at one only
scale, i.e. the one exactly corresponding to their original size.
And this may be really annoying, if you need to use them for some GIS application, freely using
useful functions such as zoom in and zoom out, as ordinary vector-type GIS data sources allow
with no problem at all.

When you try to zoom in too much a raster-type data source, then individual pixels become
absolutely evident as big solid squares. And this leads to a very poor visual effect.
Unhappily, there is very few you can do to avoid such pixelation artifact, because this require more
information than the one actually available.

RasterLite Manual 11 v. 1.0

Simple resizing Resizing combined with re-sampling

In the opposite direction, i.e. when you try to zoom out some raster image, you can get two quite
different effects, depending on the algorithm you'll apply:

• you can apply a simple image resizing: this one is a very fast operation, but the result is
visually very poor, as shown by the image on the left.

• alternatively, you can combine resizing and pixel re-sampling (interpolation); but such an
operation requires an heavy computational load, i.e. is a very slow one to be performed.

In this case may be really helpful adopting a pyramidal structure, as follows:
• the lowermost level corresponds to the original tiles (full resolution, original one)
• any other level actually contains another tiled image, adopting a smallest dimension, and

obtained applying re-sampling and interpolation. Such hi-quality reduced-size tiled image
will be prepared only once, using an off-line process, and thus doesn't requires any further
computation during run time.

• usually, each pyramid level corresponds to the immediate lowermost level, down sized by a
factor 2.

• the topmost level simply contains a single small sized tile, representing the whole raster.

RasterLite Manual 12 v. 1.0

Merging together raster and Spatial DMBS technologies

A Spatial DBMS implements SQL support (as any other plain DBMS does), but supports Spatial
Data (aka Geometry) as well.
Any Spatially enabled DBMS supports R-Trees (aka Spatial Index), thus supporting a fast way to
retrieve data using Spatial relationships.
And finally, quite any DBMS supports a valid mechanism to store huge amounts of raster images,
internally stored as BLOB (Binary Large Object) data.

The SpatiaLite DMBS supports any of these basic Spatial DBMS capabilities, but has many more
interesting features to be exploited:

• SpatiaLite simply is an extension based on the very popular and widespread SQLite DBMS:
so it's extremely light-weighted, really simple to use, and doesn't require any kind of
installation, configuration and optimization task.

• a complete SQLite + SpatiaLite DB is simply stored in a single file-system file. Such DB
files implement a cross-platform architecture.

• so you can easily transfer a complete DB simply copying it; and you can safely perform
such an operation even if you are using completely different and heterogeneous platforms.

• a SQLite DB isn't constrained by any dimensional upper limit; you can safely use a DB file
requiring several GigaBytes, with no problem at all. And SQLite allows to store BLOBs in a
really efficient way.

So, SpatiaLite really is a very good candidate to start with, when exploring advanced ad
sophisticated integration between raster and Spatial DBMS technologies.
And this is exactly the goal pursued by the RasterLite library and related tools.

A RasterLite data source, i.e. a complete, and may well be very complex, raster data source,
supporting tiles and pyramids, is based upon two correlated DB tables:

• the tableprefix_metadata table: this is used to store individual tiles metadata.
• and the tableprefix_rasters table: this is used to store individual tiles raster as BLOBs.
• there is a very good reason suggesting to split the _metadata and the _rasters tables:

SQLite doesn't like too much fetching huge rows, as the ones storing BLOBs. So, adopting a
separate table to store rasters will significatively reduce the I/O overhead, thus bringing to a
noticeable performance bonus.

• and merging together the two tables when required isn't at all difficult. You simply have to
perform a relational JOIN operation.

RasterLite Manual 13 v. 1.0

Table layout:

the tableprefix_rasters table layout:
Column Data type Clause Notes

id INTEGER NOT NULL
PRIMARY KEY AUTOINCREMENT tile unique ID

raster BLOB NOT NULL the tile raster image

the tableprefix_metadata table layout:
Column Data type Clause Notes

id INTEGER NOT NULL
PRIMARY KEY tile unique ID *

source_name TEXT NOT NULL the original source name i.e. the pathname
identifying the file containing the original image.

tile_id INTEGER NOT NULL progressive id identifying a tile within its own
pyramid's level. **

width INTEGER NOT NULL the tile horizontal dimension (pixels)
height INTEGER NOT NULL the tile vertical dimension (pixels)

pixel_x_size DOUBLE NOT NULL the horizontal dimension corresponding to a
single pixel (expressed in map units). ***

pixel_y_size DOUBLE NOT NULL the vertical dimension corresponding to a single
pixel (expressed in map units). ***

geometry POLYGON NOT NULL
a Polygon corresponding to the tile MBR aka
BBOX. (expressed in map units).
Supported by an R-Tree Spatial Index

Notes:
* a 1:1 relationship joins tableprefix_rasters.id and tableprefix_metadata.id
** each pyramid's level restart numbering tiles from 0
*** all tiles belonging to the same pyramid's level must have exactly identical values for

pixel_x_size and pixel_y_size

the raster_pyramids table layout:
Column Data type Clause Notes

table_prefix TEXT NOT NULL the table_prefix, i.e. the prefix to be prepended to
both _metadata and _rasters complete table names

pixel_x_size DOUBLE NOT NULL the horizontal dimension corresponding to a single
pixel (expressed in map units).

pixel_y_size DOUBLE NOT NULL the vertical dimension corresponding to a single pixel
(expressed in map units).

tile_count INTEGER NOT NULL the total number of tiles using this resolution

This latest simply is an utility table, supporting fast and quick identification of available pyramid's
levels for a given raster data source.

RasterLite Manual 14 v. 1.0

Useful SQL queries:

The following SQL queries are exactly the ones used internally by the RasterLite library and
related tools: you aren't supposed to never use them in a direct way, because they are managed
internally by the library itself.
Anyway, they represent a very useful didactic material, helping to get a better in-depth
understanding of actual RasterLite implementation.

SELECT pixel_x_size, pixel_y_size, tile_count
FROM raster_pyramids
WHERE table_prefix LIKE 'tableprefix'
ORDER BY pixel_x_size DESC
This SQL query retrieves all the available Pyramid's Levels for a given raster data source.

SELECT srid
FROM geometry_columns
WHERE f_table_name LIKE 'tableprefix_metadata'
 AND f_geometry_column LIKE 'geometry'
This SQL query retrieves the SRID [Spatial Reference System ID] used by a given raster data
source.

SELECT m.geometry, r.raster
FROM "tableprefix_metadata" AS m,
 "tableprefix_rasters" AS r
WHERE m.ROWID IN
 (
 SELECT pkid
 FROM "idx_tableprefix_metadata_geometry"
 WHERE xmin < frame_max_x
 AND xmax > frame_mix_x
 AND ymin < frame_max_y
 AND ymax > frame_min_y
)
 AND m.pixel_x_size = x_size AND m.pixel_y_size = y_size
 AND r.id = m.id
This query fetches [using the R-Tree Spatial Index] any tiled raster image required in order to fill
the required frame using the selected Pyramid's Level:

• frame_min_x, frame_mix_y, frame_max_x and frame_max_y identifies the MBR aka
BBOX for the required frame, i.e. the map extent you wish to cover.

• x_size and y_size identifies the required Pyramid's Level.

RasterLite Manual 15 v. 1.0

Using the RasterLite management tools

The RasterLite library standard distribution includes three useful management tools, specifically
aimed to help you while creating, feeding and testing a Raster Data Source.
All them are simple CLI (Command Line Interface) tools, so you have to launch them from the
command shell specifying any required argument as appropriate.

Step 1: loading the original rasters into a Raster Data Source:

The rasterlite_load utility tool creates a new Raster Data Source (if not already exists), and then
loads one or more GeoTIFF raster images into the data source, actually splitting the original image
into individual tiles, and eventually compressing each tiled raster as required.

Step 2: creating Pyramid's Levels for a Raster Data Source:

The rasterlite_pyramid utility tool explores an already existing Raster Data Source generating any
Pyramid's Level as required. You can safely execute many times rasterlite_pyramid, because it
works along the following guidelines:

• if any already existing Pyramid's Level is found, it will be completely deleted. Obviously,
the original full-resolution tiles will be preserved anyway.

• then any required Pyramid's Level will be completely regenerated starting from the full-
resolution tiles actually found at execution time.

Step 3: creating the TopMost Pyramid's Levels for a complex Raster Data Source:

The rasterlite_pyramid tool simply builds pyramids for each single GeoTIFF imported into the
DBMS; so, if your Raster Data Source is a complex one (i.e. using may individual GeoTIFFs) you
have to use the rasterlite_topmost utility tool in order to build the TopMost Pyramid's Levels tiles
(i.e. tiles joining more adjacent GeoTIFFs). Creating such TopMost Level tile will speed up a lot
visualizing the Raster Data Source as a whole. You can safely execute many times
rasterlite_topmost, because it works along the following guidelines:

• if any already existing TopMost Pyramid's Level is found, it will be completely deleted.
Obviously, the original full-resolution tiles and the lowermost level tiles will be preserved
anyway.

• then any required Pyramid's Level will be completely regenerated starting from the
lowermost resolution tiles actually found at execution time.

Step 4: testing and checking a Raster Data Source:

The rasterlite_tool utility tool access an already existing Raster Data Source generating an arbitrary
frame image as required. This is really useful by itself, and represents a powerful test tool as well.
You can export such frame images into the GeoTIFF, GIF, PNG or JPEG format, so you can easily
use any ordinary visual SW in order to examine them.

As a general rule, RasterLite doesn't requires huge amounts of memory to work.
Even if you are processing really wide raster images [e.g. requiring some 500MB each one], you
can safely try to process them using a standard PC with only 512MB RAM.
You'll be surprised when you'll check by yourself how low actually is the memory footprint
required by RasterLite to run efficiently.

RasterLite Manual 16 v. 1.0

rasterlite_load arguments:

Short format Long format Expected value Notes
-? --help Prints the arg-list and then exits

-t --test
Performs any preliminary step, but
doesn't alter at all the DB: useful for
preliminary feasibility checking.

-v --verbose Verbose output [single tile progress]

-d --db_path SQLite + SpatiaLite DB path

Mandatory arg.
The DB must exists, and must contain
the SpatiaLite Metadata tables.
[spatial_ref_sys, geometry_columns]

-T --table-name tableprefix identifying the
Raster Data Source

Mandatory arg.
If such a data source doesn't exists, it
will be created.

-D --dir-path
a pathname identifying a
directory containing one or
more GeoTIFFs

Mandatory arg, mutually exclusive.
You can use --file in order to load a
single raster, or –dir-path in
order to load any GeoTIFF found into
the selected directory all-in-one. -f --file a pathname identifying a

single GeoTIFF

-s --tile-size the preferred max. tile size

Optional arg, default = 512
You can freely select any integer
value, but it will be impicitely reset
into the range 128 - 8192

-e --epsg-code a valid EPSG SRID code

Optional arg.
Usually any GeoTIFF includes its
own EPSG code, but sometimes this
is completely foolish or broken one.
So you can use --epsg-code in
order to forcibly override to some
different soundest value.

-i --image-type the preferred image format to
be used for individual tiles

Optional arg, default = JPEG
Allowable values are: TIFF, PNG,
GIF, JPEG and WAVELET *

-q --quality
the adjustable quality setting
for lossy compression
algorithms supporting such
an option

Optional arg, default = 75 for JPEG
or = 25 for WAVELET

Ignored in any other case.

* as explained in a previous paragraph, some constraints will restrict allowable image format
conversions.

RasterLite Manual 17 v. 1.0

rasterlite_load applies the following schema to determine the actual image format to be used to
store individual tiles:

GeoTIFF sub-format Requested format Format actually used

MONOCHROME

TIFF
TIFF MONOCHROME
compressed as CCITT FAX-4

loseless compression

PNG
GIF
JPEG
WAVELET

GRAYSCALE

TIFF TIFF GRAYSCALE
uncompressed

PNG PNG GRAYSCALE
loseless compression

GIF JPEG GRAYSCALE
lossy compressionJPEG

WAVELET WAVELET GRAYSCALE
lossy compression

PALETTE 256 colors

TIFF TIFF PALETTE
uncompressed

PNG PNG PALETTE
loseless compression

GIF
GIF
loseless compressionJPEG

WAVELET

RGB

TIFF TIFF RGB
uncompressed

PNG PNG RGB
loseless compression

GIF JPEG RGB
lossy compressionJPEG

WAVELET WAVELET RGB
lossy compression

RasterLite Manual 18 v. 1.0

rasterlite_pyramid arguments:

Short format Long format Expected value Notes
-? --help Prints the arg-list and then exits

-t --test
Performs any preliminary step, but
doesn't alter at all the DB: useful for
preliminary feasibility checking.

-v --verbose Verbose output [single tile progress]

-d --db_path SQLite + SpatiaLite DB path

Mandatory arg.
The DB must exists, and must
contain the SpatiaLite Metadata
tables.
[spatial_ref_sys, geometry_columns]

-T --table-name tableprefix identifying the
Raster Data Source

Mandatory arg.

-i --image-type
the preferred image format to
be used for individual tiles

Optional arg, default = PNG
Allowable values are: TIFF, PNG,
JPEG and WAVELET *

-q --quality
the adjustable quality setting
for lossy compression
algorithms supporting such
an option

Optional arg, default = 75 for JPEG
or = 25 for WAVELET

Ignored in any other case.

* Tiles belonging to any Pyramid's Level (except the original full-resolution one) must use the RGB
color space anyway. This is because the re-sampling (pixel interpolation) algorithms used to
generate the scaled-down images does apply dithering, thus effectively expanding the color space
actually required.

RasterLite Manual 19 v. 1.0

rasterlite_topmost arguments:

Short format Long format Expected value Notes
-? --help Prints the arg-list and then exits

-t --test
Performs any preliminary step,
but doesn't alter at all the DB:
useful for preliminary feasibility
checking.

-v --verbose Verbose output [single tile
progress]

-d --db_path SQLite + SpatiaLite DB
path

Mandatory arg.
The DB must exists, and must
contain the SpatiaLite Metadata
tables.
[spatial_ref_sys,
geometry_columns]

-T --table-name tableprefix identifying
the Raster Data Source

Mandatory arg.

-i --image-type
the preferred image
format to be used for
individual tiles

Optional arg, default = PNG
Allowable values are: TIFF,
PNG, JPEG and WAVELET *

-q --quality

the adjustable quality
setting for lossy
compression algorithms
supporting such an
option

Optional arg, default = 75 for
JPEG
or = 25 for WAVELET

Ignored in any other case.

-c --transparent-color hexadecimal RGB color
0xRRGGBB

Optional arg, default NONE

-b --background-color hexadecimal RGB color
0xRRGGBB

Optional arg, default BLACK
(i.e. 0x000000)

* Tiles belonging to any Pyramid's Level (except the original full-resolution one) must use the RGB
color space anyway. This is because the re-sampling (pixel interpolation) algorithms used to
generate the scaled-down images does apply dithering, thus effectively expanding the color space
actually required.

** Please note: you have to run rasterlite_topmost after running rasterlite_pyramid: and
always remember, using rasterlite_topmost on a Raster Data Source containing only a single
GeoTIFF make absolutely no sense.

RasterLite Manual 20 v. 1.0

rasterlite_tool arguments:

Short format Long format Expected value Notes
-? --help Prints the arg-list and then exits
-o --output the output image path Mandatory arg.

-d --db_path

SQLite + SpatiaLite DB
path

Mandatory arg.
The DB must exists, and must
contain the SpatiaLite Metadata
tables.
[spatial_ref_sys,
geometry_columns]

-T --table-name tableprefix identifying
the Raster Data Source

Mandatory arg.

-x --center-x X coordinate Mandatory args.
The Map Point corresponding to
the image center.-y --center-y Y coordinate

-r --pixel-size decimal number
Mandatory arg.
Pixel size (expressed in Map
Units)

-w --width output image width Mandatory args.
The output image dimensions
(expressed in pixels)-h --height output image height

-i --image-type
the preferred image
format to be used for
individual tiles

Optional arg, default = JPEG
Allowable values are: TIFF,
PNG, GIF and JPEG *

-q --quality

the adjustable quality
setting for lossy
compression algorithms
supporting such an
option

Optional arg, default = 75 for
JPEG

Ignored in any other case.

-c --transparent-color hexadecimal RGB color
0xRRGGBB

Optional arg, default NONE

-b --background-color hexadecimal RGB color
0xRRGGBB

Optional arg, default BLACK
(i.e. 0x000000)

* requesting an output GIF image may produce a failure, due to color space limitations.

RasterLite Manual 21 v. 1.0

supporting Grids

a very commonly found Raster GIS data, is represented by Grids: a Grid isn't a digital image at
all, but actually is a georeferenced rectangular matrix, and each cell stores some numeric value
(i.e. some georeferenced physical measure). Grids are very often used to store DEMs (Digital
Elevation Models): in this case each cell value corresponds to the mean elevation for that map cell.

Transforming some Grid into a corresponding GeoTIFF is a quite trivial task: you simply have to
set an appropriate false-color scale in order to transform each cell-value into a corresponding
pixel.

The rasterlite_grid utility tool supports you in an easy way during this Grid to GeoTIFF
transformation.

rasterlite_grid arguments:

Short format Long format Expected value Notes
-? --help Prints the arg-list and then exits

-g --grid-path the Grid path
[input] Mandatory arg. *

-c --color-path the Color Table path
[input] Mandatory arg. **

-t --tiff-path the GeoTIFF path
[output] Mandatory arg.

-p --proj4text a valid PROJ.4 string Mandatory arg. ***

-f --grid-format the Grid format

Mandatory arg. *
May be one of:

• ASCII
• FLOAT

-n --nodata-color hexadecimal RGB color
0xRRGGBB

Optional arg, default BLACK
(i.e. 0x000000)

-v --verbose Verbose output [single scanline
progress]

* supported Grids may have one of the following formats:
• an ASCII Grid is a single file [usually identified by the .asc suffix]. When using an ASCII

Grid you are required to set the complete grid path [including the suffix], as in:
◦ -g grid-name.asc

• a FLOAT Grid is shipped as a couple of corresponding files (sharing a common prefix):
◦ the grid-prefix.hdr file will contain the Grid headers infos.
◦ the grid-prefix.flt file will containe the Grid binary data.
◦ both files are required in order to retrieve the Grid data. When using a FLOAT Grid you

are required to set the abstract grid path [omitting any suffix], as in:
◦ -g grid-name

RasterLite Manual 22 v. 1.0

** the Color Table simply is a text file. Each row has to contain the following tokens:
a) the minimum range value
b) the maximum range value
c) an hexadecimal RGB color corresponding to this range of values.

Each token has to be separated from the following using any sequence of SPACE or TAB
characters.
Each row has to be terminated using an LF or CR+LF

The following is a simple example of well formatted Color Table:

-4 -3 0xcddff1
-2 -2 0xcedff1
-1 -1 0xcfdff1
0 0 0xd0e0f0
1 2 0xd0ffd0
3 4 0xcffed0

*** a PROJ.4 string represents the complete set of geodetic parameters identifying some SRID.

Examples:
PROJ.4 string Corresponding

EPSG SRID

-p "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" 4326
WGS 84

-p "+proj=utm +zone=32 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
32632
WGS 84
UTM zone 32N

You can easily retrieve such strings by querying the EPSG dataset, i.e. querying the
spatial_ref_sys table contained in every SpatiaLite's DB.

RasterLite Manual 23 v. 1.0

Using the RasterLite C API

The RasterLite library implements a simple, straightforward and really easy-to-use C API.
This means that you can immediately use RasterLite into your own C or C++ code; but it would be
really easy to implement appropriate bindings for many other languages, namely Python.
And the RasterLite API is splendidly suited to allow an easy and painless integration for FastCGI
applications.

Opening and closing a RasterLite data source:

#include <rasterlite.h>

void * rasterliteOpen(const char *path, const char *table_prefix);

void rasterliteClose(void * handle);

First of all you have to call rasterliteOpen() in order to establish a permanent connection to
some Raster Data Source, specifying the DB path and the table_prefix identifying the data source.
This function will always return a reference to an opaque handle identifying the data source for
any subsequent function call. Such handle may well be an invalid one (if some error occurred) so
you must carefully check for such an evenience.

Before terminating, your program must absolutely call rasterliteClose() for each handle
obtained by rasterliteOpen(), in order to disconnect the data source and freeing any related
memory allocation.
After calling rasterliteClose() the handle becomes an invalid one, and any subsequent use
of the terminated handle will likely cause a program crash.

Error checking:

#include <rasterlite.h>

int rasterliteIsError(void * handle);

const char * rasterliteGetLastError(void * handle);

You can check if the previous RasterLite function call raised an error condition calling
rasterliteIsError(); this will return 0 (no error) or 1 (some error was encountered).

You can get a full error message calling rasterliteGetLastError(); if no error was set this
will return NULL

As a general rule, RasterLite's functions can return the following status values:
• RASTERLITE_OK (success)
• RASTERLITE_ERROR (some error occurred) .

RasterLite Manual 24 v. 1.0

Image retrieving:

#include <rasterlite.h>

int rasterliteGetRaster (void * handle, double cx, double cy,
 double pixel_size, int width, int height,
 int image_type, int quality_factor,
 void **raster, int *size);

int rasterliteGetRaster2 (void * handle, double cx, double cy,
 double pixel_x_size, double pixel_y_size,
 int width, int height, int image_type,
 int quality_factor, void **raster, int *size);

int rasterliteGetRasterByRect (void * handle, double x1, double y1, double x2,
 double y2, double pixel_size, int width,
 int height, int image_type, int quality_factor,
 void **raster, int *size);

int rasterliteGetRasterByRect2 (void * handle, double x1, double y1, double x2,
 double y2, double pixel_x_size,
 double pixel_y_size, int width, int height,
 int image_type, int quality_factor,
 void **raster, int *size);

Basically, there is simply only one function, i.e. rasterliteGetRaster2(); the others merely
are convenience functions allowing a more flexible way to specify arguments.

You always have to specify the raster dimension, using the width and height args.
You can select the requested image format using the image_type arg, and you can optionally
specify a compression factor using the quality_factor arg (this will be ignored if not
supported by the image format; and when it specifies an invalid value a sound default will be wisely
replaced). You must use one of the following pre-defined constant values for image_type:
GAIA_JPEG_BLOB
GAIA_GIF_BLOB
GAIA_PNG_BLOB
GAIA_TIFF_BLOB

You can set the center point Map Coordinates using the cx and cy args, or alternatively you can set
the frame extreme points using the x1, y1, x2 and y2 args.
You can set the required pixel size for both axes using the pixel_size arg, or alternatively you
can set a distinct pixel size for each axis using the pixel_x_size and pixel_y_size args.

If the function call was a successful one, you can now find the image you've requested stored inside
the memory allocation pointed by raster, and with a size length. In case or failure (retvalue 0),
then raster will point to NULL, and size is always 0.

You are requested to free any memory allocated by the image when you don't need this to be used
any longer; so you have to explicitly call: free(raster);

RasterLite Manual 25 v. 1.0

Exporting a GeoTIFF:
#include <rasterlite.h>

RASTERLITE_DECLARE int rasterliteExportGeoTiff (void *handle,
 const char *img_path, void *raster, int size,
 double cx, double cy, double pixel_x_size,
 double pixel_y_size, int width, int height);

You can export a GeoTIFF image as well, following a two step process:
• first you have to generate an in-memory generic TIFF image, by calling one of the above

rasterliteGetRaster...() functions.
• and then you have to call rasterliteExportGeoTiff() in order to save a true

GeoTIFF on the file system, as the following code snippet shows:

#include <stdio.h>
#include <rasterlite.h>

 void * handle;
 int srid;
 const char *auth_name;
 int auth_srid;
 const char *ref_sys_name;
 const char *proj4text;
 const char *img_path = "test-geotiff.tif";
 void *raster;
 int size;
 double cx = 11.5; /* the center point X coord */
 double cy = 43.5; /* the center point Y coord */
 int dim = 1024; /* the GeoTIFF width and height */
 double pix_size = 0.5; /* the pixel size */
/* opening the data source */
 handle = rasterliteOpen("mydb.sqlite", "my_rasters");
 if (rasterliteIsError(handle))
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
/* querying for Reference System and Extent */
 if (rasterliteGetSrid(handle, &srid, &auth_name, &auth_srid,
 &ref_sys_name, &proj4text) != RASTERLITE_OK)
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
 if (rasterliteGetRaster (handle, cx, cy, pix_size, dim, dim, GAIA_TIFF_BLOB, 0,
 &raster, &size) == RASTERLITE_OK)
 {
 if (rasterliteExportGeoTiff (handle, img_path, raster, size, cx, cy,
 pix_size, pix_size, dim, dim) != RASTERLITE_OK)
 fprintf (stderr, "write error on \"%s\"\n", img_path);
 /* freeing the raster image */
 free (raster);
 }
 else
 {
 /* some error occurred */
 fprintf (stderr, "ERROR: %s\n", rasterliteGetLastError (handle));
 }
/* closing the data source */
 rasterliteClose(handle);

RasterLite Manual 26 v. 1.0

Reference System and Extent functions:

#include <rasterlite.h>

int rasterlingGetSrid(void *handle, int *srid, const char **auth_name,
 int *auth_srid, const char **ref_sys_name,
 const char **proj4text);

int rasterliteGetExtent(void *handle, double *min_x, double *min_y,
 double *max_x, double *max_y);

You can use these functions in order to get the Reference System and the Extent for a given data
source, as the following code snippet shows:

#include <stdio.h>
#include <rasterlite.h>

 void * handle;
 int srid;
 const char *auth_name;
 int auth_srid;
 const char *ref_sys_name;
 const char *proj4text;
 double min_x;
 double min_y;
 double max_x;
 double max_y;
/* opening the data source */
 handle = rasterliteOpen("mydb.sqlite", "my_rasters");
 if (rasterliteIsError(handle))
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
/* querying for Reference System and Extent */
 if (rasterliteGetSrid(handle, &srid, &auth_name, &auth_srid,
 &ref_sys_name, &proj4text) != RASTERLITE_OK)
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
 if (rasterliteGetExtent(handle, &min_x, &min_y, &max_x, &max_y) !=
 RASTERLITE_OK)
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
 printf("'%s'\n", rasterliteGetTablePrefix(handle));
 printf("\tSRID = %d\n", srid);
 printf("\tAuthority = %s\n", auth_name);
 printf("\tAuthSRID = %d\n", auth_srid);
 printf("\tRefSys Name = %s\n", ref_sys_name);
 printf("\tProj4Text = %s\n", proj4text);
 printf("\tExtent Min = %1.6f %1.6f\n", min_x, min_y);
 printf("\tExtent Max = %1.6f %1.6f\n", max_x, max_y);
/* closing the data source */
 rasterliteClose(handle);

RasterLite Manual 27 v. 1.0

Miscellaneous functions:

#include <rasterlite.h>

const char * rasterliteGetPath(void * handle);

const char * rasterliteGetTablePrefix(void * handle);

const char * rasterliteGetSqliteVersion(void * handle);

const char * rasterliteGetSpatialiteVersion(void * handle);

int rasterliteGetLevels(void *handle);

int rasterliteGetResolution(void *handle, int level, double *pixel_x_size,
 double *pixel_y_size, int *tile_count);

• rasterliteGetPath()
• rasterliteGetTablePrefix()
• rasterliteGetSqliteVersion()
• rasterliteGetSpatialiteVersion()

These functions are simply intended to give you a little help in checking the main features for a
given data source, but are not at all really interesting.

You can use instead the other two function in a more useful way in order to check the Pyramid's
Levels available for a data source, as the following code snippet shows:

#include <stdio.h>
#include <rasterlite.h>

 void * handle;
 int levels;
 int cur_level;
 double x_size;
 double y_size;
 int tile_count;
/* opening the data source */
 handle = rasterliteOpen("mydb.sqlite", "my_rasters");
 if (rasterliteIsError(handle))
 {
 printf("ERROR: %s\n", rasterliteGetLastError(handle));
 rasterliteClose(handle);
 return;
 }
/* querying the available Pyramid's Levels */
 levels = rasterliteGetLevels(handle);
 printf("the '%s' data source contains %d Pyramid's Levels:\n\n",
 rasterliteGetTablePrefix(handle), levels);
 for (cur_level = 0; cur_level < levels; cur_level++)
 {
 rasterliteGetResolution(handle, cur_level, &x_size, &y_size, &tile_count);
 printf("level %d of %d] x_size=%1.6f y_size=%1.6f tiles=%d\n",
 cur_level + 1, levels, x_size, y_size, tile_count);
 }
/* closing the data source */
 rasterliteClose(handle);

