
RasterLite
a short How To guide based on practical examples

First of all, we need some GeoTIFF to process. Happily we can just download them from the True
Marble download site. True Marble represents a complete world coverage derived from high-
quality NASA satellite imagery: this material is released under the Creative Commons license, so
we can use in an absolute free way, without any legal issue and at cost zero. True Marble imagery is
available at different resolutions:

• 32 km per pixel [very low resolution, small sized]
• 16 km per pixel
• 8 km per pixel
• 4 km per pixel
• 2 km per pixel
• 1 km per pixel
• 500 m per pixel
• 250 m per pixel [best available resolution, huge sized]

For this tutorial we'll use the 1 km per pixel resolution. Lesser resolutions are two small to be really
interesting: higher resolutions are too heavy to be used in a tutorial.
Anyway, if you wish, you can try using the 500m or the 250m per pixel resolution: in this case you
simply need more time (and more disk space) to complete the tutorial.

Linux / Mac OsX users:

If you are using some smart O.S. (I intend to mean Linux, or any other Unix-like O.S.) you can
simply launch [as a shell script] one the followings:

- to get the 1 Km per pixel resolution:
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.1km.21600x21600.A1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.1km.21600x21600.B1.tif.gz

http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A2.tif.gz

- to get the 500 m per pixel resolution:
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D2.tif.gz

- to get the 250 m per pixel resolution:
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.A1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.A2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.A3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.A4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.B1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.B2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.B3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.B4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.C1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.C2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.C3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.C4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.D1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.D2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.D3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.D4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.E1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.E2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.E3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.E4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.F1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.F2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.F3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.F4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.G1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.G2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.G3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.G4.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.H1.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.H2.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.H3.tif.gz
wget http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.H4.tif.gz

Windows users:

If you are using any other O.S. (i.e. one not supporting wget), you can directly open your preferred
WEB browser and then go to the following URL (and then manually download any required file,
one at each time): http://www.unearthedoutdoors.net/global_data/true_marble/download

Caution:these files are really huge: some of them has an individual size exceeding 500 MB.
Even if you are using a fast Internet connection, be prepared to wait for several tenths of minutes,
or several hours, in order to complete the download.

Once you've finished downloading the complete set of your choice, you have now to gunzip any
file you've just downloaded (Windows users can decompress any file using 7-zip).
As you can easily notice, each one of these uncompressed TIFF images [21600 by 21600 pixels]
has an astonishing size of 1.45 GB.

Warning: never try to get a preview of these images, because such an operation requires a lot of
available memory. You can very easily experience some pain and big troubles doing such a thing,
and in the worst case your system may crash and/or require a reboot to be reset in a sound state.

http://www.ngdc.noaa.gov/mgg/global/global.html
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.H2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.G2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.F2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.E2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.D2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.C2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.B2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.250m.21600x21600.A2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.D1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.C1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.B1.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A2.tif.gz
http://ueod-globe.net/globe/TrueMarble_GeoTIFF/TrueMarble.500m.21600x21600.A1.tif.gz

All right, now we have any base material needed to get started.

Step 1: creating an empty DB

You simply have to start spatialite (or spatialite-gui, if you are most familiar using a
GUI tool), and then create an empty DB named truemarble.sqlite in the same folder where
you have placed the TIFF files [rationale: rasterlite_load hasn't the capability to fully
initialize an empty DB, so you have to prepare the DB using a different spatialite tool].

Step 2: checking the GeoTIFFs

Launch the following command from the shell (set your current directory as the one where you've
placed all the GeoTIFFs and the DB you've just created):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -t

• -d truebmarble.sqlite selects the DB you've just crated as the current one to be
connected

• -T TrueMarble is the name assigned to the raster data source you are going to create
• -D . specifies that any valid GeoTIFF contained into the current directory has to be

processed
• -t means test-mode-only: i.e. for now we intend verify the GeoTiffs, without actually

inserting them into the DB

Executing this command will produce an output like this one:
Processing GeoTIFF: './TrueMarble.1km.21600x21600.A1.tif'
===
Pixels: 21600h x 21600v
Pixel size: 0.0083333333h 0.0083333333v
EPSG code: 4326
 Upper Left corner: -180.0000000000 90.0000000000
 Upper Right corner: -0.0000000000 90.0000000000
 Lower Left corner: -180.0000000000 -90.0000000000
 Lower Right corner: -0.0000000000 -90.0000000000

Compression: Uncompressed
BitsPerSample: 8
SamplesPerPixel: 3
TileWidth: 512
TileLength: 512

Colorspace: RGB - TrueColor
FormatHint: JPEG / WAVELET / TIFF
ActualFormat: JPEG [RGB] quality=75

RequiredTiles: 1849 tiles [503h x 503v]

Processing GeoTIFF: './TrueMarble.1km.21600x21600.B1.tif'
===
Pixels: 21600h x 21600v
Pixel size: 0.0083333333h 0.0083333333v
EPSG code: 4326
 Upper Left corner: 0.0000000000 90.0000000000
 Upper Right corner: 180.0000000000 90.0000000000
 Lower Left corner: 0.0000000000 -90.0000000000
 Lower Right corner: 180.0000000000 -90.0000000000

Compression: Uncompressed
BitsPerSample: 8
SamplesPerPixel: 3
TileWidth: 512
TileLength: 512

Colorspace: RGB - TrueColor
FormatHint: JPEG / WAVELET / TIFF
ActualFormat: JPEG [RGB] quality=75

RequiredTiles: 1849 tiles [503h x 503v]

This represents and exact preview of what rasterlite_load will actually do when launched
for effective processing.
There is no anomaly detection, so you can now pass to the following ...

Important notice: you'll easily found that rasterlite_load will emit some warning message
like:

TIFFOpen: ./.: Cannot open.
discarding './.': not a GeoTIFF (or read error)
TIFFOpen: ./..: Cannot open.
discarding './..': not a GeoTIFF (or read error)

Don't be afraid: this is absolutely harmless. What really happens is simply that
rasterlite_load doesn't relies on file suffixes (like .tif or .tiff) in order to identify the
GeoTIFF files contained into the selected directory, but relies instead upon internal signature
[magic numbers] checking for each file.
Consequently, the above warnings simply means: “Oh yea, this one isn't a GeoTIFF, I'll ignore it”

Step 3: feeding rasters [GeoTIFFs] into the DB

Launch again the same command, this time omitting the -t option, and actual raster loading into the
DB will start:

rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -v

After a few minutes the process terminates regularly, and now your DB containing the Raster Data
Source is completely fed.
In the preceding step we used some default setting: and this actually means that now any raster tile
is stored into the DB as JPEG (that implies a lossy compression), Q=75 (medium quality, medium
compression). But nothing prevents us using some different image format, or a different
compression factor.

We can store our tiles as uncompressed TIFFs:
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i tiff

… as compressed PNG (loseless compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i png

… as JPEG Q=90 (high quality, mild compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i jpeg -q 90

… as JPEG Q=50 (modest quality, strong compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i jpeg -q 50

… as JPEG Q=25 (infamous quality, very strong compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i jpeg -q 25

… as WAVELET (lossy compression) Q=25 (high quality, mild compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i wavelet -q 25

… as WAVELETS Q=50 (medium quality, medium compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i wavelet -q 50

… as WAVELETS Q=100 (modest quality, strong compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i wavelet -q 100

… as WAVELETS Q=150 (infamous quality, very strong compression):
rasterlite_load -d truemarble.sqlite -T TrueMarble -D . -i wavelet -q 150

Image Type Visual Example

TIFF (RGB)
uncompressed
DB size = 2.63GB

PNG (RGB)
loseless compression
DB size = 397 MB

both produce an exactly
identical result, because a
loseless compression
algorithm always return a
decompressed image exactly
corresponding to the
original one

JPEQ Q=90
lossy compression,
high quality
DB size = 82.4 MB

Image Type Visual Example

JPEQ Q=75
medium quality
DB size = 52.6 MB

JPEQ Q=50
modest quality
DB size = 39.1 MB

Image Type Visual Example

JPEQ Q=25
infamous quality
DB size = 29.9 MB

WAVELET Q=25
lossy compression,
high quality
DB size = 41.3 MB

Image Type Visual Example

WAVELET Q=50
medium quality
DB size = 23 MB

WAVELET Q=100
modest quality
DB size = 13.2 MB

Image Type Visual Example

WAVELET Q=150
infamous quality
DB size = 10 MB

As you can easily notice, quality offered by lossy algorithms when using very aggressive
compression factors, is not at all good: but is still quite useful to be used, because the required data
size is really very small: when disk space is absolutely critical, a somewhat compromised quality
surely is better than nothing at all.

On the opposite side, using loseless compression algorithms (PNG) leads to an uncompromised
quality, but at the expenses of a noticeably bigger data size; using uncompressed TIFFs makes no
sense at all, because this will waste an huge amount of disk space, and quality is exactly the same
you can achieve using PNG.

A very reasonable half-way compromise may be the one to use lossy compression algorithms
(JPEG, WAVELET) applying the lowest compression factors: this will save a lot of disk space
anyway, still preserving a really good quality.

Quick and useful format hints:

Tile Image Format Compression Notes

TIFF
[RGB, Palette, Grayscale]

None
Ill advised. Require too much disk space.
Huge-sized tiles make SQL queries to run quite
slowly.

TIFF
[Monochrome]

CCITT FAX-4
loseless

Best choice for Monochrome images.

PNG
[RGB, Palette, Grayscale]

loseless Best choice, when a loseless compression is
required

GIF
[Palette]

loseless Good: applicable only to palette-based images.

JPEG
[RGB, Grayscale]

lossy, adjustable
Q=90 best quality
Q=25 worst

Very good, when a lossy compression is
admissible.
For optimal results, always use the range:
Q = 90 / Q = 75.

WAVELET
[RGB, Grayscale]

lossy, adjustable
Q=10 best quality
Q=150 worst

More or less, the same as JPEG: better than JPEG
when applying very extreme compression ratios.
For optimal results, always use the range:
Q = 10 / Q = 50.

Step 4: building the Pyramid's Levels

Now you have to perform the another operation to make the Raster Data Source completely ready to
be used: building the Pyramid's Levels, i.e. producing the high-quality reduced-scale images
representing the Data Source at lowest resolutions.

To perform this last operation, you simply have to launch the following command:

rasterlite_pyramid -d truemarble.sqlite -T TrueMarble -v

After a few minutes the process terminates regularly, and this time your DB containing the Raster
Data Source is completely ready to be immediately used.

Please note: raster images used into Pyramid's Levels are generated by default using the loseless
compression PNG format: this is because compressing an already compressed image (as would be
the case, when using some lossy compression algorithm as JPEG) will introduce lots of artifacts,
thus bringing the final result to be far from fully satisfactory.

Anyway, if you are trying to produce a really small-sized DB, using PNG for Pyramid's Levels will
waste some extra space.

So in such an evenience you can use e.g. JPEG or WAVELET for Pyramid's Levels images as well:
rasterlite_pyramid -d truemarble.sqlite -T TrueMarble -i jpeg

rasterlite_pyramid -d truemarble.sqlite -T TrueMarble -i wavelet

Step 5: building the TopMost Pyramid's Levels

Now you have to perform the very last operation, building the TopMost Pyramid's Levels, i.e.
generating the high-quality reduced-scale images joining the various individual GeoTIFFs inserted
into the complex Raster Data Source (a complex Raster Data Source is one containing more than a
single GeoTIFF).

To perform this last operation, you simply have to launch the following command:

rasterlite_topmost -d truemarble.sqlite -T TrueMarble -v

This one is usually a quite fast step to be performed.

Step 6: testing the Raster Data Source:

All right, the Raster Data Source is finally ready to be used: so we can now try to generate some
image using the Data Source in order to check if anything is properly working.
We'll use the rasterlite_tool utility in order to extract such images:

rasterlite_tool -o image.jpg -d truemarble.sqlite -T TrueMarble \
 -x 12.5 -y 41.9 -r 0.008333 -w 1024 -h 1024

• the TrueMarble Data Source uses the WGS 84 latitude/longitude reference system: so,
setting the center-point of the image at x=12.5, y=41.9 will set such center-point on the city
of Rome.

• we'll use a pixel size corresponding to 0.008333 [i.e., we'll use the best available
resolution]. Please note, this value is expressed into map units as defined by the
corresponding SRID; so this value has to be intended as 0.008333 degrees per pixel,
corresponding to exactly 30 degree seconds per pixel.

• and we'll generate a square image, 1024 x 1024.
• we have not set any other arg, so this image will be exported as a JPEG with a 75 default

quality.

rasterlite_tool -o image.jpg -d truemarble.sqlite -T TrueMarble \
 -x 12.5 -y 41.9 -r 0.008333 -w 1024 -h 1024 -i jpeg -q 20
We can generate a second JPEG using a very strong compression …

rasterlite_tool -o image.jpg -d truemarble.sqlite -T TrueMarble \
 -x 12.5 -y 41.9 -r 0.008333 -w 2048 -h 2048 -i jpeg -q 90
We can generate a third JPEG using a very high quality with a bigger extension …

rasterlite_tool -o image.png -d truemarble.sqlite -T TrueMarble \
 -x 12.5 -y 41.9 -r 0.008333 -w 1024 -h 1024 -i png
We can generate a PNG image …

rasterlite_tool -o image.tif -d truemarble.sqlite -T TrueMarble \
 -x 12.5 -y 41.9 -r 0.008333 -w 1024 -h 1024 -i tiff
And finally we can generate a TIFF image. Please note: this actually is a GeoTIFF: you can check
this loading this image into QGis, or using the listgeo tool.

Post-Mortem: some final analysis

Base-level
tiles format

Pyramid's Levels
tiles format

DB size Ratio %
Notes

TIFF
uncompressed

PNG
loseless compression 2.77 GB 100%

full size, no compression at all

PNG PNG 543 MB 19.1%
loseless compression, fully reversible

JPEG Q=90 PNG 229 MB
8.08%

lossy compression, moderate
high quality

JPEG Q=75 PNG 194.MB 6.85%
medium quality, medium compression

JPEG Q=50
JPEG Q=75
poor quality, useful
to minimize size

58 MB
2.05%

moderate quality, strong compression

JPEG Q=25 JPEG Q=75 48.9 MB
1.72%

infamous quality,
very strong compression

WAVELET Q=25 PNG 189.MB
6.66%

lossy compression, moderate
high quality

WAVELET Q=50 PNG 165 MB 5.83%
medium quality, medium compression

WAVELET Q=100
WAVELET Q=25
poor quality, useful
to minimize size

29.5 MB
1.04%

moderate quality, strong compression

WAVELET Q=150 WAVELET Q=25 26.2 MB
0.92%

infamous quality,
very strong compression

• As you can easily notice, simply using the PNG [RGB] format to store both elementary tiles
and the Pyramid's Levels ones, will grant a really satisfying 1:5 compress ratio. And all this
without sacrificing at all quality, because this one is a loseless (fully reversible) compression
algorithm.

• Using the JPEG [RGB] to store elementary tiles, and PNG [RGB] to store the Pyramid's
Levels tiles, will grant an excellent 1:12 / 1:15 compress ratio [Q=90 / Q=75]. Quality is
really excellent, but remember, this is a lossy compression algorithm, so there is anyway a
(really slight) quality sacrifice, although this may well be completely unnoticeable to the
human eye.

• Using the WAVELET [RGB] + PNG [RGB] you can reach an even better 1:15 / 1:16
compress ratio [Q=25 / Q=50]. Consider anyway that WAVELET is a little bit slower than
JPEG during compression / uncompression.

• Just in an absolute emergency case, using a very compressed JPEG [Q=50 / Q=25] can
grant an astonishing 1:50 / 1:60 compress ratio, but at the expenses of a very low quality.

• And using a very compressed WAVELET [Q=100 / Q=150] can grant a really amazing
1:100 / 1:120 compress ratio: obviously, with a really scarce quality.

Processing the different TrueMarble resolutions:

If you wish, you can obviously process any one of the different TrueMarble resolutions freely
available for download.

The following table may help you in evaluating the corresponding DB required sizes:

TrueMarble resolution DB size
2 km 56 MB
1 km 200 MB
500 m 750 MB
250 m 2.6 GB

Every DB was loaded applying default settings, i.e. JPEG quality = 75 for first-level tiles, and PNG
for high-order pyramid's tiles.

Other useful resources available for public download

We have explained in fine detail how to build a RasterLite's Data Source using the TrueMarble
data. But you can try by yourself using some other popular data publicly available for download.

• you can get download lots of high-quality rasters [US only] from National Atlas:
http://www.nationalatlas.gov/atlasftp.html?openChapters=chpgeol#chpgeol

• you can download the ETOPO-5 DEM grid data from NOAA / NGDC:
http://www.ngdc.noaa.gov/mgg/global/global.html

• you can download the SRTM DEM grid data from CGIAR – CSI:
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp

Using ETOPO-5:

Go to the above download site and get one of the binary float grid, then uncompress the file you've
just downloaded.

gunzip etopo1_bed_g.gz
ls etopo*
etopo1_bed_g.flt etopo1_bed_g.hdr
#

As you can notice, this one actually is a float [binary] grid, consisting of an header file [.hdr] and
a grid data file [.flt]; accordingly to this, we have first to transform this grid into a corresponding
GeoTIFF image:

rasterlite_grid -g etopo1_bed_g -c etopo_colors -t etopo.tif \
 -p "+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" \
 -f FLOAT -n 0x000000 -v

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
http://www.ngdc.noaa.gov/mgg/global/global.html
http://www.nationalatlas.gov/atlasftp.html?openChapters=chpgeol#chpgeol

• we are parsing the etopo1_bed_g grid [-g], which has a FLOAT format [-f]
• pixel colors will be set applying the range value definitions contained into etopo_colors

[-c] (please note: you'll find a copy of this file within the RasterLite downloadable
resources).

• we'll use the WGS 84 [EPSG SRID = 4326] geodetic parameters in order to define a
Reference System.

• The output GeoTIFF will be named etopo.tif

Please note: this process will be a slowly running one, because this grid is really huge [about 1GB],
and will produce an huge 21601 x 10801GeoTIFF [about 667MB].

Once you've got the GeoTIFF, loading a RasterLite's Data Source will be an absolutely plain task:
first of all you have to create a new, empty DB named etopo.sqlite [you can easily perform
this task using spatialite-gui]. Then duly run the following commands:

rasterlite_load -d etopo.sqlite -T Etopo -f etopo.tif -v
rasterlite_pyramids -d etopo.sqlite -T Etopo -v

Please note: in this case there is no reason at all to run the rasterlite_topmost tool, because
there is only one GeoTIFF in the whole Data Source.

When the load process will terminate, you'll get a moderately size DB [about 93MB]. You can now
visually check some image extracted from the Data Source:

rasterlite_tool -o image.jpg -d etopo.sqlite -T Etopo \
 -x 12.5 -y 41.9 -r 0.01666 -w 1024 -h 1024

Using SRTM:

You can process the SRTM imagery in way very similar to the one applied for ETOPO. We simply
will put into evidence the main differences between these two DEMs:

• ETOPO is a small resolution DEM, so it's quite light-weighted.
• SRTM is an high resolution DEM, so it's really huge [more than 70GB of GeoTIFFs]
• SRTM is distributed as ASCII grids: you can apply the srtm_colors file in order to get a

predefined Color Table. (please note: you'll find a copy of this file within the RasterLite
downloadable resources).

• Loading first-level and pyramid's tiles as JPEG quality=75 I was able to load a full-size
SRTM world coverage of reasonably good quality: the complete DB requires a disk storage
of about 2.5GB.

Using the SpatiaLite GUI tools to check
your RasterLite Data Sources

You can use the spatialite-gui tool in order to debug / explore your RasterLite Data Sources.

... you can explore the Data Source in a really easy way, simply performing plain SQL queries …

… and you can as well directly see each one individual tile …

But the best way to explore (in a fully interactive way) a Raster Data Source is the one to use the
latest spatialite-gis tool [still experimental, ALPHA state, but really useful indeed]

