SpatiaLite — Using SQL Views is really simple and easy
a very short introduction

Lots of people are frightened by terms such as: SQL,TABLE, SELECT, VIEW, JOIN
Following this step-by-step tutorial you'll quickly discover all this isn't at all so complex as you
can fear.

Getting started:

You need first to get the latest Spatialite SW: then you have to get the view-demo.sqlite sample
database in order to follow the present tutorial.

Go to the URL: http://www.gaia-gis.it/spatialite-2.4.0/
* download spatialite-gui and spatialite-gis [the one appropriate for the platform you are
actually using] from the precompiled binaries section
* download the view-demo.sqlite DB from the sample Dbs section
» then copy these files into your local filesystem

Understanding the sample DB layout:

You can now launch the spatialite-gui and start exploring the DB layout. You'll easily discover it
contains the following relevant tables:

* the Regions table depicts the Italy's topmost administrative level [Regioni]

* the Counties table depicts the Italy's intermediate administrative level [Province]

* and the LocalCouncils depicts the Italy's lowermost administrative level [Comuni]

All this one represents a classic hierarchic structure:
* each LocalCouncil belongs to some County
* and each County belongs to some Region
* so, implicitly, each LocalCouncil belongs to some Region [via its own County]

Let now examine in some detail the layout of each table.

Regions:

CREATE TABLE Regions (

RegId INTEGER PRIMARY KEY NOT NULL,
RegName TEXT NOT NULL,

RegGeom MULTIPOLYGON

)

* Regld is an unique identifier acting as Primary Key for this table
* RegName contains the Region's name
* RegGeom contains the Region boundary [as a MultiPolygon Geometry]

Under SQL rules, a PRIMARY KEY is an unique identifier used to avoid ambiguity.
Each table row has its own unique id, and this allows to reference individual rows in an completely
unambiguous way.

http://www.gaia-gis.it/spatialite-2.4.0/

Counties:

CREATE TABLE Counties (

CntyId INTEGER PRIMARY KEY NOT NULL,

CntyName TEXT NOT NULIL,

PlateCode TEXT NOT NULL,

RegId INTEGER NOT NULL,

CntyGeom MULTIPOLYGON,

CONSTRAINT fk cnty reg FOREIGN KEY (RegId)
REFERENCES Regions (RegId)

)

* Cntyld is an unique identifier acting as Primary Key for this table

* CntyName contains the County's name

* PlateCode contains a two-chars code [used for car plates, under the Italian law]

* Regld contains the unique id identifying the Region to which a County belongs: please note,
this column is declared as a Foreign Key.

* CntyGeom contains the County boundary [as a MultiPolygon Geometry]

Under SQL rules, a FOREIGN KEY [aka export key] is used to reference other tables via their
unique identifier [i.e. a Foreign Key must match exactly some corresponding Primary Key into the
referenced table]

Such cross-table correspondence is generally known as a JOIN

Usually, the table holding the Primary Key is known as the mother table, and the table holding the
Foreign Key is known as the doughter table.
The following relations may exist:

* one-to-one: each mother-side row may correspond to a single daughter-side row

* one-to-many: each mother-side row may correspond to many daughter-side rows

Quite obviously, the County-Region relation is of the type one-to-many, because a single Region
contains several Counties.

LocalCouncils:

CREATE TABLE LocalCouncils (

LcId INTEGER PRIMARY KEY NOT NULL,

LcName TEXT NOT NULL,

CntyId INTEGER NOT NULL,

LcGeom MULTIPOLYGON,

CONSTRAINT fk_lc_county FOREIGN KEY (CntyId)
REFERENCES Counties (CntyId)

)

* Lcld is an unique identifier acting as Primary Key for this table

* LcName contains the Local Council's name

* Cntyld contains the unique id identifying the County to which a Local Council belongs:
please note, this column is declared as a Foreign Key.

* LcGeom contains the Local Council boundary [as a MultiPolygon Geometry]

4 ™
LocalCouncils

4 N
e ~ Counties Lcld PK

Regions Cntyld PK ~<agimmt>- FK Cntyld
- J

Regld PK <geup| FK Regld

. S/

This simple diagram may help you to understand the Primary Key / Foreign Key relations we are
going to use in the next steps of this tutorial.

Disclaimer: the above materials [Regions, Counties and LocalCouncils] simply represents a
slightly modified version of the original data provided by ISTAT [the Italy's Statistic Authority]
You can download the original materials directly from: http://www.istat.it/ambiente/cartografia/

http://www.istat.it/ambiente/cartografia/

Problem #1:

Suppose you wish to get a table showing the following columns for each County:
* the County unique Id: Cntyld
* the County's name: CntyName
* the County's car plate code: PlateCode
* the Region unique Id: Regld
* and the Region's name to which the County belongs: RegName

This is a not-so-trivial task, because we are required to perform a relational JOIN operation between
the Counties and the Regions tables in order to collect any interesting column.

Step #1.1:

%]

Query / View Composer,

SL skatement

SELECT "a"."CntyId™ AS "CntvyId™, "a"."Cntylame™ AS "CntylName",
g, "PlateCode™ A8 "PlateCode®™, "h" . "RegId"™ AS "EegId®,
o, "REegllame™ AS "REeghame"

FROM "Counties"™ A8 a®

JOIH "Eegions" AS "hb"™ USIHG {"EegId™)

Main |Fi|I:er Crder || Yiew

Main Tahle Table #2 Jain makch #1
|Cnunties & | Enable Main Table column Table #2 column
-~ - [reons o) [rea v [ETE—
ROWID Alizs: b | Imp———
1d []Enable
Main Table column Table #2 calurmn
RegMame
nkyGeom RegGeom
_ Join match #3
Jain mode [JEnable
(%) [Inner] Join Main Table column Table #2 colurmn
) Left [uter] Join

[k.] [Cancel]

* we'll use the Query / View Composer tool implemented in the latest spatialite-gui

o first we'll select the Counties table
= declaring we are interested to get the Cntyld, CntyName and PlateCode columns

o and then we'll select the Regions table
= declaring we intend to get the Regld and RegName columns

o we'll require a plain JOIN [don't bother ... we'll see later what a Left Join means]

o and finally we'll select the Regld column on both tables to establish the required match
cryteria

Query f View Composer

SOL skakernent

X

SELECT "a"."CntyId™ A8 "CntyId™, "a"."Cntylame"™ A8 "Cntylame™,
fa"."PlateCode™ A5 "PlateCode™, "b'"."RegId"™ A5 "RegId™,

h', "RegName™ AS "RegNaune'
FROM "Countiezs"™ AS "a"
JOIH "BEegions"™ AS "hb" USIHG {"Fegld™)

Main | Filker | Order | Wiew |

Create Yiew options
View bype
(%) Mo View [execute SELECT query]
() Create Wiew [ordinary SQL view]
() Create Spatial View [could be used as a GIS Layer]

Yiew name

Geometry Column

| ok

] [Cancel

]

* as you can notice, the Composer tool will write for you the (quite exoteric and unfamiliar)
SQL statement, following your directives step by step, as soon as you enter them.
* Once you have completed the SQL statement, you can go to the View tab and require some

action to be actually performed

o please, go slowly: at first, you'll simply require to execute the SELECT query
o and then confirm your settings by pressing the OK button
© as you can easily test, this query produces exactly the required result set

Step #1.2:

%]

Query / View Composer,

SL skatement

CREATE VIEW "ViewCntv™ AS

SELECT "a"."CntyId™ AS "CntvyId™, "a"."Cntylame™ AS "CntylName",
g, "PlateCode™ A8 "PlateCode®™, "h" . "RegId"™ AS "EegId®,
o, "REegllame™ AS "REeghame"

FROM "Counties"™ A8 a®

JOIH "Eegions" AS "hb"™ USIHG {"EegId™)

Main | Filker | Order | Wiiga |

Create Yiew options
Wiew type Geometry Column
) Mo iew [execute SELECT query]
(%) Create View [ordinary SQL view] Main table geometries
) Create Spatial View [could be used as a GIS Laver] Table #2 geometries
View name
| WiewCnky |
[Ok,] [Cancel]

* repeat the above step: go to the Main tab and introduce the same identical settings as above
* but now you'll require [in the View tab] to create a View named ViewCnty

. s patialite-gui

[a GUI tool for, SQLitelS patial ite]

Files
Az d 9@ B =B @ & e 4
= _,.g'l,sgllumz!:'l,prcu]-epsg'l,xflew-demu:u.sq SELECT Crtyliame, Reolame
j EDunt.lrES : @ FROM ViewCnty
¥ :
Vet TYRES ' WHERE Feclizre IN
|| Events [ubria', 'Lazio', 'Holise') =
‘@ LocalCouncils : ria’, azio’, olize
® Redions &) |ORDER BY Cntylizme
(| WigwiCnty :
| geomn_cols_ref_sys
|| geometry_calumns v
[| geometry_columns_auth LHEPRETTE | ETEE i
|z id_LocalCouncils_LeGeom 1 (Campobasso Molise
[idx_LocalCouncils_LoGeom_node = | Frosinone Lazio
[idx_LocalCouncils_LcGeom_pare : -
[idx_LocalCauncils _LoGeom_rawic 3 |Isernia Molise
[] spatial_ref_sys 4 |Latina Lazio
|| solite_stat1 5 Perugia Urnbria
[views_geometry_columns 6 |Ricti Lazio
_J wirks_geometry _calumns -
7 Raoma Lazio
8 Terni Urnbria
a [Witerhn 1 A7in !
P T ‘ M| 4 H = | b H [l | current block: 1§ 9 [2 rows]

Current SLike DB: Chsviluppa'iproj-epsglview-dema, sqlite

as you can easily check, now the ViewCnty view figures as a DB permanent object

and you can query this view exactly as if it was a plain, ordinary table.
nevertherless, some important difference exists between tables and views:
a view is always a read-only object in SQLite, 1.e.:

= you can perform any SELECT op on a view

= but you are never allowed to perform INSERT, UPDATE or DELETE ops on a view.

o

Problem #2:

Suppose you wish now to get a table showing the following columns for each Local Council:

* the Local Council unique Id: Lcld

» the Local Council's name: LcName

* the County unique Id: Cntyld

* the County's name to which the Local Council belongs: CntyName

» the County's car plate code: PlateCode

* the Region unique Id: Regld

* the Region's name to which the Local Council belongs: RegName

* and suppose as well you wish to use all this as a GIS layer: so you have to include as well
the LcGeom Geometry as well, in order to implement this option.

You have to JOIN three tables now: LocalCouncils, Counties and Regions: and this is a quite
complex task.

But you've just defined the ViewCnty view: and this one resolves by itself the task of JOINing
together the Counties and Regions tables.

So you can simply JOIN the LocalCouncils table and the ViewCnty view, in order to solve in the
simplest and painless way this problem.

Step #2.1:

Query ! View Composer

X

Sl skatement

SELECT ™"af."LoId™ A8 MLoId™, "af, "LolNasme™ AS "LolMamme™,
o, MoneyIdt AS "CnovyId®, "B "CntylName™ AS "CntyMName'™,
P, "R lateCode™ AS "PlateCode™, k" MRegId™ AS "HegId®,
ot "Reglame" AS "EReghaune™

FROM "LocalCouncils®™ A8 Maf

JOIH "ViewCnty™ AS "hb" USIHG {"CntvyIdf)

Main | Filker || Crder | Wiew
Main Table Table #2 Join makch #1
|Lu:uca|Cu:uunu:iIs = | Enable Main Table column Table #2 column
i CnbyId
Alias: |a | |'-.-'|eanty w | | nky
Alias: |I:| | Join match #2
[]Enable
Main Table column Table #2 column
A=TalF L=l Join match #3
Join mode FlEnable
(%3 [Inner] Join Main Table column Table #2 colurmn
{1 Lefr [Duter] Join

[Ol] [Cancel

we'll use again the Query / View Composer tool implemented in the latest spatialite-gui
o first we'll select the LocalCouncils table

= declaring we are interested to get the Leld and LeName columns
o and then we'll select the ViewCnty table

= declaring we intend to get the Cntyld, CntyName, PlateCode, Regld and
RegName columns

o we'll require a plain JOIN
o and finally we'll select the Cntyld column on both tables to establish the required match
cryteria

Query [/ Yiew Composer ﬁl

S6L

CREATE YIEW "LocalCouncilaView™ AS
SELECT faf.,"ROWID™ AS "ROWID™, Ta,"LoId™ AS "LoIld™,

FROM "LocalCouncils™ AF "a'
JOIH "ViewlInty™ AS "h'™ USIHG {("CntyId™)

Main

skatement

fa™, "Lelame™ A "Loelame™, "a™., "LoGeom™ AS "LoGeom®™,
ot "CntyIdT AS "CnoyId™, "h',"CntyName™ AS "CntylName',
o, "PlateCode™ AS "PlateCode™, "hb'","RegId™ AS "Regld",
', "Regame™ AS "RegNaume '™

Filker || Order | Wiew

Create Yiew options

Wiew Eype izeametry Column

) Mo Wiew [execute SELECT query]
() Create Wiew [ordinary SQL view] (&) Main table geometries
(%) Create Spatial View [could be used as a GIS Layer] (O Table #2 geometries
Wigw narne LoGeam "

LocalCouncilsWigw

[ol] [Cancel]

this time you'll require [in the View tab] to create a Spatial View named
LocalCouncilsView

a full-featured Spatial View doesn't simply represents an ordinary view

it supports a Geometry column as well, and can be used as a GIS layer [obviously,
subjected to read-only restrictions]

and that's not all: if you've already defined a Spatial Index based on the relevant Geometry

column (or, if you'll define one in the after coming), a Spatial View will inherit such Spatial
Index.

Step #2.2:

Please note: now the current DB contains two GIS layers representing the Local Councils:
* the first one is the original LocalCouncils table
* and the second one is the LocalCouncilsView you've already created

It's not a good idea leaving things in such a state: this is because geometries are anyway the sames,
but other columns change.

If you immediately try to show the DB Layers using any GIS app, you'll discover such an
inconsistency.

But there is no real good reason to support any longer the LocalCouncils table as a GIS layer,
because the LocalCouncilsView is a most rich and useful replacement.
You now have to hide the LocalCouncils table, so to avoid that GIS apps will try using it as a Layer.

- spatialite-gui [a GUI tool for 5QLite/Spatial ite]

Files

Az d v 0@ @3k =B @ & e0

= | Chsviluppohproj-epsglview-dem:
I Counties F &
[] EventTvpes
[| Events =
[=)-lig LocalCouncils
2 Led | @
@ LcMame r
@ CnkyId
i [Mee=Tulyy - l — .
;j: agi_Loc Column: "LocalCouncils®."LcGeom
sz ggu_Ln Refresh
o7 gid_Loc Show Spatial Metadaka
;i’ gii_Locz
;i’ giu_Loo
[LocalCounc
i@ Regions
| WienwCnby
| geam_cals_ Rebuild Geometry Triggers
[] geometry
| | geometry_¢ @@ Export as Shapefile
__‘% idx_LocalCaurtils_LeEeamn
: [] idx_LocalCauncils_LeGeam_n h
e | >

515 layer authorizations

Check geometries

& Remove Spatial Index

Current SOLike DE: O\ sviluppoproj-epsglview-demo. sglite

But accomplishing this step is a very simple task: you are simply required to invoke the GIS layer
authorizations menu for the required table and geometry column.

"spatialite-gui [a GUI tool for 5QLite/Spatial ite]

Files

FREBISAGLSAR &KW 0@ B =+ @k eo

= L] Csviluppolproj-epsglview-demc A
-1 Counties
|_=| EventTvpes

ERFYY: GIS Layer authorizations

..... - Table name: | LocalZouncils

EEOMmetry name: | Loimeom |

G315 Laver skakus Editing mode

----- & 1 wisible [ordinary GIS Laver] Readirite [allows editing]
""" & (¥} Hidden [not usable as a GIS Layer ReadZnlky [not editable]

@\ [o][caes]

£

£

[] il —
- 5| geam_rols_ref_sys

£

£

£

[

:I|_=| geometry _columns

:I|_=| geometry_columns_auth

JQ idy_LocalCouncils_LoGeam

: :I|_=| idx_LocalCouncils_LcGeam_n + |
I il] |

Current SCLike DB: C:sviluppo'proj-epsglview-demo, sglite

All right, you simply have to check the required option: now the LocalCouncils tables isn't any
longer assumed to represent a GIS Layer.

Step #2.3:

Now you can perform some visual check using the spatialite-gis tool.

j Anonymous

Files

RS,
298
= @R

it 1l

LocalCouncils¥iew.l

B defaul:
[Abruzzo
[Basilicata
[calabria
[campania

[Emilia-Romagne

FAasseuysz DR @ 3

= d Zhaviluppotproj-epsg view-de

@ & | &%

Al ”’f-%“.?ﬁ'.‘r“,':\},f
q !‘D“ J'”‘#]

s ALAL & &% O W

lr‘!’__‘

i, "1

=57

N
S

4
¢

il
2y

A)

RefSys: 32632 [WGES G4

1 UTM zange 32M]

Scale 1:1957917

X1 993397.579 ¥ 47587447.451

As you can see, it really easy to get a thematic representation based upon Regions ...

L'Annnyrnnus Q@E

Files
s E @8R @m 76 @ | &
= | Chsviluppoiproj-epsglviey & | ERERE o i
= L oc alCouncilsVid
B defaul
[Aarigento
[Alessandria
[Ancona
[Arezzo
[Ascali Picen
[Asti
[avelino
[] Bari
[Belluna
[Benevento
[Bergama
[Eiela
[Bologna L2
[BolzanafBo:
[Bresdia
[EBrindisi
[Cadgliari
[] Caltanissett £
[campobass
[carbonia-Ic 5
[Caserta %@
[] Catania
[] Catanzara 3 k
[Chieti
] camo a L0

_ i
7 "%ﬂﬁﬁle
Y
(22

G
SOEL S i
& 2 (T kX

HHHHHHH

HIE >

Refays: 32632 ['Wias 84 [UTM zone 32M] Scale 1:1957917 X 576820.509 ¥ 4861737, 997

... or based upon Counties as well.

As you can quickly discover by yourself, using a Spatial View (instead of an ordinary Table)
doesn't imposes quite any undesired overhead.

Even if you are running the test on a quite slow PC, the graphical rendering will be performed
(more or less) in the same time as usual.

This is because the SQLite's data engine is smart enough to perform very fast even when accessing
Views.

Caveat: a well designed View will perform in a very brilliant way. But a badly designed View will
perform in a very poor way.

So you have to learn more about some useful performance hints. We'll examine this task in the
after coming.

Step #2.4:

& Quantum GIS r11869 M=1E3

File Modifica Visualizza Layer Impostazioni Plugins Aiuko

Jﬁdd_ﬁﬁi’é’ ”h& o |___u,,©,,

I . w - Sy l"-'_\l
d'p 4!l . Q ‘3 E| \+_ 3
. - %
ﬂﬂ%@&@%: %\13:’
Layer] 200
B % .' LocalCouncilsView [3 I
M predefinito
M Abruzzo
Basilicata
Calabria
Campania
Emilia-Romagna
Friuli-venezia Giulia
Lazino
Liguria
Lornbardia
Marche
Maolise

Fiermonte
Fuglia

1 Sardegna @
M Cicilia

g :
| Coordinate: | 308202 5069909 | scala [1:6060701 ||:t Render |

L
y

[
-

ERREERRE
] aed

,_
[
L

L
y

[
-

Please note: you can show a Spatial View using QGis as well, because the data provider for
spatialite DBs supports exactly the same features as spatialite-gis does.

Performance hints

May well be one of your Views will actually perform in a very poor and slow (sluggish) way.
The easiest cause explaining for such an evenience is quite always the same: you missed to define
some required index

When the SQL engine (query planner) detects an available index, an optimized data access strategy
will be actually deployed, and the query will run in a very fast way.

But if some index is missing, then the SQL engine isn't allowed to apply any optimization, and
consequently is forced to perform lots of stupid full table scans, thus producing sluggish queries.

Hint: always check each one of your Foreign Keys is properly supported by an opportune Index.
Creating an index will require some extra disk space, but will grant a big performance boost.

