
SpatiaLite – Using SQL Views
advanced features for power users

You'll now continue the tutorial exploring some advanced (and most complex) features.

The sample DB view-demo.sqlite contains two further tables we have ignored in the above steps:
• EventTypes: contains a short list of happenings (Rock music concert, Classic music

concert ..)
• Events: contains some 100,000+ rows of summer happenings. This one is a quite huge

table, and this will impose some extra attention to be paid in order to maintain efficiency.

The layout for each table is as follows.

EventTypes :

CREATE TABLE EventTypes (
EvtId INTEGER PRIMARY KEY NOT NULL,
EvtType TEXT NOT NULL
)

• EvtId is an unique identifier acting as Primary Key for this table
• EvtType contains the event's category description

Events :

CREATE TABLE Events (
LcId INTEGER NOT NULL,
Year INTEGER NOT NULL,
Month INTEGER NOT NULL,
Day INTEGER NOT NULL,
EvtId INTEGER NOT NULL,
CONSTRAINT pk_evt PRIMARY KEY (LcId, Year, Month, Day),
CONSTRAINT fk_evt_lc FOREIGN KEY (LcId)
 REFERENCES LocalCouncils (LcId),
CONSTRAINT fk_evt_type FOREIGN KEY (EvtId)
 REFERENCES EventTypes (EvtId)
)

CREATE INDEX idx_events_date (Year, Month, Day)

CREATE INDEX idx_events_type (EvtId)
• LcId is the unique identifier referencing the Local Council who is organizing the happening.
• Year, Month and Day all together contain the happening's date.
• EvtId is the unique identifier referencing the Event Type.

• this table has a peculiar Primary Key: this is based on four columns (LcId, Year, Month and
Day). There is nothing wrong in defining a multi-column Primary Key. This is a plain,
standard SQL feature. [please note: we are arbitraily assuming each Local Council will
host a single happening for each single day]

• a first Foreign Key references the LocalCouncils table via the LcId column
• and a second Foreign Key references the EventTypes table via the EvtId column
• there is nothing wrong in defining more then one Foreign Key for the same table: this too is

a plain, standard SQL feature
• please note: the LcId appears on both the Primary Key and as a Foreign Key: but this too

isn't at all a wrong operation.
• this one is an huge table: so we've defined a couple of indexes in order to support efficient

queries

None of these tables has a Geometry on its own: but a reference to the LocalCouncils table exists,
so we are allowed to derive some useful GIS layer, simply defining some appropriate Views.

Step #1:

You'll now create a first View resolving the JOIN between the Events and the EventTypes tables.

• nothing new in doing this: you simply define a JOIN between the two tables.

• as usual: you'll now create a new View named EvtView

Step #2:

You'll now create a first GIS layer showing any planned happening for the 2009-08-15 date.

• once again, there is nothing new in doing this

• and finally you'll perform a new task never explained before
• you'll set a filter clause in order to extract only the happenings for the 2009-08-15 date

• now you'll create a Spatial View named Evt2009Aug15
• this one contains the LocalCouncils Geometry column, so you can directly use it as a GIS

layer

• all right: here is the happening's map [2009-09-15] shown by spatialite-gis.

Please note: you are forced to show the Counties layer anyway, in order to get a decent map.
Otherwise the map will be shown very badly [try by yourself: make the Counties layer to be
invisible, and you'll immediately understand what I'm meaning).

This is easily explained: we used a simple JOIN op, so only the Local Councils actually
performing some happening on 2009-08-15 will be included into the result set.
Any other Local Council [i.e., the many ones not performing any happening on 2009-08-15 will be
simply ignored into the result set.

You can circumvent this issue quite easily: you have simply to use a LEFT JOIN op in order to
include any silent Local Council into the result set as well.

And this requires some extra-care, because the SQLite query engine doesn't handles LEFT JOIN
sas fast as you can hope, expecially when huge Geometries are involved.
You risk to get a sluggish query anyway, if you don't plan very carefully your own queries and/or
views.

Step #3:

You'll now create a second GIS layer showing any planned happening for the 2009-08-15 date, but
this time you'll use a LEFT JOIN in order to include the silent Local Councils into the result set as
well.

You cannot follow a straight way to get a LEFT JOIN Spatial View.

• you'll first define an intermediate View, whose role is simply the one to filter events by date
• so you'll simply select any relevant column from the EvtView view
• please note: you are not required at all to always use two tables when defining a View

• then you'll apply the appropriate filter clause in order to get only the 2009-08-15 happenings
• after this, you can create the Evt2009Aug15_2 view

• and finally you can create your LEFT JOINED Spatial View

• all right, this time you LEFT JOINed Spatial View correctly depicts any Local Council

Caveat: using such an indirect approach you can get a (quite slow) but still effettive and usable
layer.
Trying to adopt the direct approach (i.e., directly performing a LEFT JOIN and the date filtering
all togetether in a single step) will produce an untolerably sluggish layer.
I mean, one you cannot use for any practical purpose.

Step #4:

You'll now create a third GIS layer showing any planned happening of the 'Lyric Opera' type in
August 2009: in order to make things a little bit more complex, you are required to aggregate the
events by County.
In other worlds, you are required to show how many lyric operas have been played in each County
during the whole August month.

CREATE VIEW Evt2009Aug_OperasByCounty AS
SELECT a.CntyId AS CntyId, a.CntyName AS CntyName,
 a.PlateCode AS PlateCode, b.Year AS Year, b.Month AS Month,
 Count(*) AS TotOpera
FROM Counties AS a, EvtView AS b, LocalCouncils AS c
WHERE c.CntyId = a.CntyId AND b.LcId = c.LcId
 AND b.Year = 2009 AND b.Month = 8 AND b.EvtType = 'Lyric opera'
GROUP BY a.CntyId

• yes, there is nothing wrong in this. Don't be lazy: you can create complex queries writing
them completely by hand.

• don't fall victim of a nasty GUI-tools addiction: GUI tools are easiest and more comfortable
to use, but using your own brain (from time to time) may well be a good exercise as well.

• and now you can revert to the sybaritic luxury offered by the GUI Query/Viewer Composer
tool …

• finally creating a Spatial View you can then use as a GIS layer

• here we are: you've just performed a quite complex analysis in a very few steps
• and after all, it wasn't as difficult as you thought at first sight

Performance hints
The SQL data engine [query optimizer] implemented by SQLite seems to have some very specific
hidiosyncrasies. Keep them always in mind, before planning your queries and/or views:

• complex View chains [i.e. defining a View based on a second View, and so on] are
supported in a very efficient and brilliant way: at least, as long as you take care of defining
any relevant index useful to quickly resolve the required JOIN conditions.

• but such complex View chains perform in a very poor (sluggish) way, if any Geometry
column is involved. This issue may be less noticeable in the case of POINT Geometries,
but it becomes a major issue in the case of (possibly huge) POLYGONs or LINESTRINGs
Geometries.

• performance is noticeably slower when using LEFT JOINs.

All right, folks ... that all for tonight
I hope you've enjoined and found useful all this

