
libspatialite v.2.4.0-RC5b Experimental

Spatial Index UPDATE
Just some considerations about R*Tree and Spatial Index; here is a short summary:

• How to corrupt an R*Tree (oh, yes … sometimes it happens ...)
• Checking and Recovering broken R*Trees
• the brand new SpatialIndex module (Virtual Table)

How to corrupt an R*Tree Spatial Index
A short recapitulation to understand better:

• any SQLite R*Tree simply is a distinct table [actually: a Virtual Table]
• SQLite on its own is completely unaware of correspondences relating an R*Tree and the

corresponding table.geometry
• SpatiaLite implements several triggers in order to ensure that the R*Tree would constantly

be fully synchronized with the corresponding table.geometry
• A relational JOIN between the R*Tree and the corresponding table.geometry is

ensured by correspondent ROWID values.
• Each single row stored within any SQLite's table is uniquely identified by a ROWID value.
• If the table has a PRIMARY KEY, then the ROWID value is immutably related to the

PRIMARY KEY value(s).
• But when the table has no PRIMARY KEY, then the ROWID simply is the relative row

number.

CREATE TABLE test (name TEXT NOT NULL);
SELECT AddGeometryColumn('test', 'geom', 4326, 'POINT', 'XY') ;
SELECT CreateSpatialIndex('test', 'geom');
INSERT INTO test (name, geom) VALUES ('a', MakePoint(1, 1, 4326));
INSERT INTO test (name, geom) VALUES ('b', MakePoint(2, 2, 4326));
INSERT INTO test (name, geom) VALUES ('c', MakePoint(3, 3, 4326));
INSERT INTO test (name, geom) VALUES ('d', MakePoint(4, 4, 4326));
INSERT INTO test (name, geom) VALUES ('e', MakePoint(5, 5, 4326));
SELECT ROWID, name, ST_AsText(geom) FROM test;
ROWID name ST_AsText(geom)
1 a POINT(1 1)
2 b POINT(2 2)
3 c POINT(3 3)
4 d POINT(4 5)
5 e POINT(5 5)

Absolutely nothing strange in all this: we have simply created a new table, then inserting just few
rows.
Please note well: this table has no PRIMARY KEY defined.

SELECT pkid, xmin, xmax, ymin, ymax FROM idx_test_geom;
pkid xmin xmax ymin ymax
1 1.000000 1.000000 1.000000 1.000000
2 2.000000 2.000000 2.000000 2.000000
3 3.000000 3.000000 3.000000 3.000000
4 4.000000 4.000000 4.000000 4.000000
5 5.000000 5.000000 5.000000 5.000000
SELECT ROWID, name, ST_AsText(geom)
FROM test
WHERE ROWID IN (
 SELECT pkid
 FROM idx_test_geom
 WHERE pkid MATCH RTreeIntersects(2, 2, 3, 3));
ROWID name ST_AsText(geom)
2 b POINT(2 2)
3 c POINT(3 3)

Test #1: we'll simply query the R*Tree then performing a trivial query using the R*Tree.
Not at all surprisingly, anything runs as expected.

DELETE FROM test WHERE name IN ('a', 'd', 'e');
VACUUM;
SELECT ROWID, name, ST_AsText(geom)
FROM test
WHERE ROWID IN (
 SELECT pkid
 FROM idx_test_geom
 WHERE pkid MATCH RTreeIntersects(2, 2, 3, 3));
ROWID name ST_AsText(geom)
2 c POINT(3 3)

Test #2: we'll just DELETE some rows; then we'll VACUUM the DB in order to reclaim any
unused storage space.
And finally we'll perform the same identical query using the R*Tree Spatial Index: but this time
we'll get a wrong result set. A row is obviously missing.
Why ? really simple to explain … because the R*Tree is now severely corrupted.

SELECT ROWID, name, ST_AsText(geom) FROM test;
ROWID name ST_AsText(geom)
1 b POINT(2 2)
2 c POINT(3 3)
SELECT pkid, xmin, xmax, ymin, ymax FROM idx_test_geom;
pkid xmin xmax ymin ymax
2 2.000000 2.000000 2.000000 2.000000
3 3.000000 3.000000 3.000000 3.000000

Post Mortem: performing a VACUUM compacts any unused space: and consequently ROWIDs for
the test table have been reassigned.
But the corresponding R*Tree is still exactly the same as above: it's a real catastrophe !!!
Relational correspondences between the main table rows and the R*Tree aren't any longer valid.

Please note well: all this happens simply because the test table has no PRIMARY KEY defined (a
not so common condition).

Please note well (2): there is absolutely no way to prevent such catastrophe: SpatiaLite fully relies
upon triggers to ensure consistency between the main table and the corresponding R*Tree. But
trigger are (quite obviously) disabled while performing a VACUUM operation.
Anyway, if the table correctly has a declared PRIMARY KEY performing a VACUUM is an
absolutely safe and risk-free operation.
This issue simply affects any table without a PRIMARY KEY; and in this case too corruption arises
only when a VACUUM is performed after executing some DELETE.

You are now warned.
1. defining any table without any supporting PRIMARY KEY is strongly discouraged
2. and can lead to severe Spatial Index inconsistencies

Checking and Recovering broken R*Trees
SELECT CheckSpatialIndex('test', 'geom');
> 0
SELECT RecoverSpatialIndex('test', 'geom');
> 1
SELECT CheckSpatialIndex();
> 1
SELECT ROWID, name, ST_AsText(geom)
FROM test
WHERE ROWID IN (
 SELECT pkid
 FROM idx_test_geom
 WHERE pkid MATCH RTreeIntersects(2, 2, 3, 3));
ROWID name ST_AsText(geom)
1 b POINT(2 2)
2 c POINT(3 3)

The ChekSpatialIndex() function will check if the required Spatial Index is valid and fully
consistent.
And the RecoverSpatialIndex() function will attempt to recover the required Spatial Index
into a valid and fully consistent state.

Syntax:
SELECT CheckSpatialIndex('test', 'geom');
SELECT CheckSpatialIndex();
SELECT RecoverSpatialIndex('test', 'geom');
SELECT RecoverSpatialIndex('test', 'geom', 1);
SELECT RecoverSpatialIndex();
SELECT RecoverSpatialIndex(1);

The ChekSpatialIndex() function comes in two flavors:
• you can specify both a table and a geometry-column: in this case only the

corresponding R*Tree (if actually existing) will be checked.
• otherwise you can invoke this function with no arguments: in this case any R*Tree (as

defined into geomety_columns) will be checked.

The RecoverSpatialIndex() function supports more options:
• you can specify both a table and a geometry-column: in this case only the

corresponding R*Tree (if actually existing) will checked first; and only if it is found to be in
an inconsistent state will then be actually recovered.

• same as above, but appending a further TRUE boolean value: in this case the R*Tree will be
unconditionally recovered.

• otherwise you can invoke this function with no arguments: in this case any R*Tree (as
defined into geomety_columns) will be checked first, and eventually recovered if
required.

• and finally you can invoke this function passing a single TRUE boolean value; in this case
any R*Tree (as defined into geomety_columns) will be unconditionally recovered.

About VirtualSpatialIndex

The brand new VirtualSpatialIndex modyke is intended to simplify R*Tree Spatial Index usage in
SQL queries. As you already know, in SQLite / SpatiaLite R*Tree Virtual Tables can be actually
used an a very efficient Spatial Index: anyway an explicit sub-query is required in order to inquiry
the corresponding Spatial Index.

SELECT lc1.lc_name AS "Tuscan Local Council",
 c1.county_name AS "Tuscan County",
 lc2.lc_name AS "Neighbour LC",
 c2.county_name AS County,
 r2.region_name AS Region
FROM local_councils AS lc1,
 local_councils AS lc2,
 counties AS c1,
 counties AS c2,
 regions AS r1,
 regions AS r2
WHERE c1.county_id = lc1.county_id
 AND c2.county_id = lc2.county_id
 AND r1.region_id = c1.region_id
 AND r2.region_id = c2.region_id
 AND r1.region_name LIKE 'toscana'
 AND r1.region_id <> r2.region_id
 AND ST_Touches(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (
 SELECT pkid
 FROM idx_local_councils_geometry
 WHERE pkid MATCH RTreeIntersects(
 MbrMinX(lc1.geometry),
 MbrMinY(lc1.geometry),
 MbrMaxX(lc1.geometry),
 MbrMaxY(lc1.geometry)))
ORDER BY c1.county_name, lc1.lc_name;
[taken from: http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/neighbours.html]

The above SQL queries exemplifies how an R*Tree Spatial Index was accessed following the
classic way:

• specifying the R*Tree table was required: FROM idx_local_councils_geometry
• a geo-callback function was required in order to specify the MBR to be searched for:

WHERE pkid MATCH RtreeIntersects(...)
• and in turn this required to explicitly set the MBR corners: MbrMinX() ...

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/neighbours.html

Using VirtualSpatialIndex adds some syntactic sugar to all this:

SELECT lc1.lc_name AS "Tuscan Local Council",
 c1.county_name AS "Tuscan County",
 lc2.lc_name AS "Neighbour LC",
 c2.county_name AS County,
 r2.region_name AS Region
FROM local_councils AS lc1,
 local_councils AS lc2
JOIN counties AS c1
 ON (c1.county_id = lc1.county_id)
JOIN counties AS c2
 ON (c2.county_id = lc2.county_id)
JOIN regions AS r1
 ON (r1.region_id = c1.region_id)
JOIN regions AS r2
 ON (r2.region_id = c2.region_id)
WHERE r1.region_name LIKE 'toscana'
 AND r1.region_id <> r2.region_id
 AND ST_Touches(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (
 SELECT ROWID
 FROM SpatialIndex
 WHERE f_table_name = 'local_councils'
 AND search_frame = lc1.geometry)
ORDER BY c1.county_name, lc1.lc_name;

This one is exactly the same query as above: but using VirtualSpatialIndex now we are allowed
using a simpler (and clearer) syntax.

Some useful explanations:
• SpatialIndex is a Virtual Table implementing the VirtualSpatialIndex logic
• every new DB created by libspatialite-RC5b automatically includes the SpatialIndex

table immediately after creation.
• anyway, you can explicitly create this table on any already existing DB simply typing:

◦ CREATE VIRTUAL TABLE SpatialIndex USING VirtualSpatialIndex();

The SpatialIndex table contains the following columns:
• f_table_name, f_geometry_column:

◦ exactly the same as in geometry_columns; they are used so to identify the required
Geometry table.column and the corresponding R*Tree (if any).

• search_mbr:
◦ corresponding to any arbitrary Geometry: this is used so to set the MBR to be searched

within the R*Tree [Intersects mode is assumed anyway].

According to VirtualSpatialIndex internal logic, f_table_name, f_geometry_column and
search_mbr cannot be queried: if you'll attempt to do such a thing, you'll simply get back NULL
values. You can query a ROWID value instead (corresponding to any matching ROWID withing the
R*Tree)
Anyway you can set f_table_name, f_geometry_column and search_mbr values as
required and appropriate into the WHERE clause.

SELECT ROWID
FROM SpatialIndex
WHERE f_table_name = 'local_councils'
 AND f_geometry_column = 'geometry'
 AND search_frame = lc1.geometry;
this one is a fully qualified VirtualSpatialIndex query; and is processed as follows:

• the VirtualSpatialIndex module will first check if an R*Tree Spatial Index is defined for
local_councils.geometry

• if confirmed, then the corresponding R*Tree will be queried using the imposed
search_frame

• and finally any matching ROWID will be returned into the ResultSet.

SELECT ROWID
FROM SpatialIndex
WHERE f_table_name = 'local_councils'
 AND search_frame = lc1.geometry;
but in many cases you can set a partial VirtualSpatialIndex query as well:

• usually each table simply has an unique Geometry column.
• if this assumption is actually satisfied, there is no need at all to specify an explicit value

corresponding to f_geometry_column simply because the VirtualSpatialIndex module
can easily identify which Geometry column corresponds to the table you've already
specified.

Some further examples
SELECT lc1.lc_name AS "Local Council",
 c.county_name AS County,
 r.region_name AS Region
FROM local_councils AS lc1
JOIN counties AS c ON (
 c.county_id = lc1.county_id)
JOIN regions AS r ON (
 r.region_id = c.region_id)
LEFT JOIN local_councils AS lc2 ON (
 lc1.lc_id <> lc2.lc_id
 AND NOT ST_Disjoint(lc1.geometry, lc2.geometry)
 AND lc2.ROWID IN (
 SELECT ROWID
 FROM SpatialIndex
 WHERE f_table_name = 'local_councils'
 AND search_frame = lc1.geometry))
GROUP BY lc1.lc_id
HAVING Count(lc2.lc_id) = 0
ORDER BY lc1.lc_name;
[please see: http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/islands.html]

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/islands.html

SELECT pp.id AS PopulatedPlaceId,
 pp.name AS PopulatedPlaceName,
 lc.lc_id AS LocalCouncilId,
 lc.lc_name AS LocalCouncilName,
 c.county_name AS County,
 r.region_name AS Region
FROM populated_places AS pp
LEFT JOIN local_councils AS lc
 ON (ST_Contains(lc.geometry,
 Transform(pp.geometry, 23032))
 AND lc.lc_id IN (
 SELECT ROWID
 FROM SpatialIndex
 WHERE f_table_name = 'local_councils'
 AND search_frame = Transform(pp.geometry, 23032)))
LEFT JOIN counties AS c
 ON (c.county_id = lc.county_id)
LEFT JOIN regions AS r
 ON (r.region_id = c.region_id)
ORDER BY 6, 5, 4;
[please see: http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/pop-places.html]

SELECT rw.name AS Railway,
 lc.lc_name AS LocalCouncil,
 c.county_name AS County,
 r.region_name AS Region
FROM railways AS rw
JOIN local_councils AS lc ON (
 ST_Intersects(rw.geometry, lc.geometry)
 AND lc.ROWID IN (
 SELECT ROWID
 FROM SpatialIndex
 WHERE f_table_name = 'local_councils'
 AND search_frame = rw.geometry))
JOIN counties AS c
 ON (c.county_id = lc.county_id)
JOIN regions AS r
 ON (r.region_id = c.region_id)
ORDER BY r.region_name,
 c.county_name,
 lc.lc_name;
[please see: http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/railways-lc.html]

http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/railways-lc.html
http://www.gaia-gis.it/spatialite-2.4.0-4/spatialite-cookbook/html/pop-places.html

