
Supporting coolest GEOS v.3.3.0 advanced features
(and other miscellaneous stuff)

ST_Line_Locate_Point() / ST_Line_Substring()

We'll start from a quite complex LINESTRING [violet line]: for the sake of simplicity we'll call
such LINESTRING as the_line.

SELECT ST_Line_Interpolate_Point(the_line, 0.1);
SELECT ST_Line_Interpolate_Point(the_line, 0.2);
...
SELECT ST_Line_Interpolate_Point(the_line, 0.9);
These functions will create a POINT laying on the_line every 10% of the total line length [green
dots]

SELECT ST_Line_Substring(the_geom, 0.15, 0.45);
SELECT ST_Line_Substring(the_geom, 0.65, 0.85);
And these will extract to further LINESTRINGs, the first one ranging from 15% to 45%, and the
second one from 65% to 85% of the total line length [yellow overstrike].

ST_OffsetCurve()

This time too we'll start from the same complex LINESTRING [violet line] named the_line.

SELECT ST_OffsetCurve(the_line, 10, 1);
SELECT ST_OffsetCurve(the_line, 15, 0);
The first function will create a left-sided curve with an offset factor of 10m [orange line]
And the second function will create a right-sided curve with an offset factor of 15m [green line]

ST_ClosestPoint() / ST_ShortestLine()

Suppose a LINESTRING named the_line [blue line] and two distinct POLYGONs named pg_1 and
pg_2 [violet areas].

SELECT ST_ShortestLine(the_line, pg_1);
SELECT ST_ShortestLine(the_line, pg_2);
SELECT ST_ShortestLine(pg1, pg_2);
Each one of these functions will create a LINESTRING representing the minimum distance line
between two arbitrary geometries [dotted red lines].

SELECT ST_ClosestPoint(the_line, pg_1);
SELECT ST_ClosestPoint(pg_1, the_line);
The first one will identify the POINT on the_line nearest to pg_1
And the second one will identify the POINT on pg_1 nearest to the_line [yellow dots]
Please note: such points simply represent extremities of the corresponding minimum distance line
identified by ST_ShortestLine().

ST_Snap()

Suppose a LINESTRING named the_line [blue line] and a POLYGON named the_polygon [red
area].

SELECT ST_Snap(the_polygon, the_line, 10.0);
This function will create a new POLYGON [green area], nicely snapped to the_line.

This further example shows the result of ST_Snap() using two LINESTRINGs

ST_Covers() / ST_CoveredBy()
We'll use again the two LINESTRINGs of the above figure: for the sake of clarity we'll name
the_blue_line the first one, and the_green_line the snapped one.

SELECT ST_Covers(the_green_line, the_blue_line);
> 0 [false]
SELECT ST_CoveredBy(the_green_line, the_blue_line);
> 1 [true]
SELECT ST_Covers(the_blue_line, the_green_line);
> 1 [true]
SELECT ST_CoveredBy(the_blue_line, the_green_line);
> 0 [false]
You can use these functions to check if one Geometry fully covers (or is covered by) a second
Geometry.

ST_SharedPaths()

Suppose two adjacent POLYGONs respectively named pg_1 [red area] and pg_2 [brown area]. And
imagine that a strict topological conformity exists between such polygons.

SELECT ST_SharedPaths(pg_1, pg_2);
This function will identify any edge portion common to both polygons [magenta lines].

Please note #1: the returned Geometry is constantly represented as a MULTILINESTRING, even
when a single common edge has been identified.

The same operation can be applied to LINESTRINGs as well: imagine a couple of partially
overlapping Linestrings respectively named line_1 [red] and line_2 [green].

SELECT ST_SharedPaths(line_1, line_2);
Paths commons to both line_1 and line_2 are shown in the figure as yellow lines.

ST_UnaryUnion()
Suppose a quite complex GEOMETRYCOLLECTION named the_geom:
GEOMETRYCOLLECTION(POINT(5 5), POINT(3 3), POINT(10 10),
LINESTRING(0 10, 9 10), LINESTRING(3 3, 7 7), LINESTRING(1 5, 5 1),
POLYGON((5 0, 10 0, 10 9, 5 9, 5 0)), POLYGON((0 0, 6 0, 6 6, 0 6, 0 0)),
POLYGON((4 2, 7 2, 7 5, 4 5, 4 2)))

Please note: this GEOMETRYCOLLECTION is invalid: several items are mutually overlapping.

SELECT ST_AsText(ST_UnaryUnion(the_geom));
> GEOMETRYCOLLECTION(POINT(10 10), LINESTRING(0 10, 9 10),
 POLYGON((5 0, 0 0, 0 6, 5 6, 5 9, 10 9, 10 0, 6 0, 5 0)))
This function will recover a valid Geometry, as graphically shown in the following figure:

ST_LineMerge()

Suppose some complex road (river, railway …) represented by many and many sparse fragments.
In the above figure each single fragment is represented by a different colour.
And suppose you have been already able to put all the above fragments into a single
MULTILINESTRING named the_fragments (please wait for now: we'll examine this topic in a
further step ...)

SELECT ST_LineMerge(the_fragments);

All right: using ST_LineMerge() you'll now have a single continuous LINESTRING.

ST_BuildArea() / ST_Polygonize() / ST_Collect()

More or less, the same as above: this time too you'll start from a MULTILINESTRING. named
the_fragments [this actually being a sparse collection of line fragments]. In the above figure each
single fragment is represented by a different colour.

SELECT ST_BuildArea(the_fragments);
This function will try to reassemble a valid POLYGON / MULTIPOLYGON starting from sparse
fragments.

And here is the reassembled POLYGON generated by ST_BuildArea().

The ST_Polygonize() function performs the same identical task, but using a different syntactic
approach:
SELECT ST_Polygonize(the_line)
FROM my_lines
WHERE polygon_id = x
GROUP BY polygon_id;
This one is an aggregate function [… GROUP BY …], so there is no need at all to pass a
MULTILINESTRING geometry containing any required line-fragment.
Using this second approach you can simply have an ordinary table [my_lines], each row containing
an unique line-fragment [the_line].

There is no conceptual difference between them: it's simply a matter of convenience and of different
syntax flavors: but the main core is anyway one and the same.

The ST_Collect() function too can be successfully used on these cases, when aggregating
several elementary Geometries into an unique complex Geometry is required.

SELECT ST_AsText(ST_Collect(
 GeomFromText('POINT(1 2)'),
 GeomFromText('POINT(3 4)')
));
> MULTIPOINT(1 2, 3 4)
SELECT ST_AsText(ST_Collect(
 GeomFromText('POINT(1 2)'),
 GeomFromText('LINESTRING(3 4, 5 6)')
));
> GEOMETRYCOLLECTION(POINT(1 2), LINESTRING(3 4, 5 6))
This first form accepts two arbitrary input Geometries, and return a complex Geometry representing
both elementary Geometries.

SELECT ST_Collect(the_line)
FROM my_lines
WHERE polygon_id = x
GROUP BY polygon_id;
This second form is an aggregate function instead: and will return a complex Geometry
representing any elementary Geometry found on the underlying aggregate target.

SELECT ST_Polygonize(the_line)
FROM my_lines
WHERE polygon_id = x
GROUP BY polygon_id;
SELECT ST_BuildArea(ST_Collect(the_line))
FROM my_lines
WHERE polygon_id = x
GROUP BY polygon_id;
Accordingly to all the above considerations, both SQL queries performs the same identical task.
They only apparently are different; but in substantial terms they are absolutely equivalent.

ST_DissolvePoints() / ST_DissolveSegments()
We'll start again using the same POLYGON of the previous example, naming it as the_polygon

SELECT ST_DissolvePoints(the_polygon);
This function will dissolve any arbitrary Geometry into a MULTIPOINT: any POINT will remain
unaffected, but any LINESTRING or RING will simply be represented by its Vertices.

SELECT ST_DissolveSegments(the_polygon);
And this second function will dissolve any arbitrary Geometry into a MULTILINESTRING or
GEOMETRYCOLLECTION: any POINT will remain unaffected, but any LINESTRING or RING
will be then represented by simple segments (each one of them being represented by a different
colour in the above figure).

Please note: dissolving into segments some broken (invalid) POLYGON/MULTIPOLYGON, and
then calling ST_BuildArea() may be a good approach to recover a valid Geometry.

ST_CollectionExtract()
Suppose a quite complex GEOMETRYCOLLECTION named the_geom:
GEOMETRYCOLLECTION(POINT(105 105), POINT(103 103), POINT(102 102),
LINESTRING(0 10, 9 10), LINESTRING(30 30, 37 37), LINESTRING(51 55, 55 51),
POLYGON((75 70, 80 70, 80 79, 75 79, 75 70)))

You can invoke the ST_CollectionExtract() function in order to extract elementary
Geometries from the Collection by homogeneous type.

SELECT ST_AsText(ST_CollectionExtract(the_geom, 1));
> MULTIPOINT(105 105, 103 103, 102 102)
Please note: the argument 1 identifies the POINT type.

SELECT ST_AsText(ST_CollectionExtract(the_geom, 2));
> MULTILINESTRING((0 10, 9 10), (30 30, 37 37), (51 55, 55 51))
Please note: the argument 2 identifies the LINESTRING type.

SELECT ST_AsText(ST_CollectionExtract(the_geom, 3));
> MULTIPOLYGON(((75 70, 80 70, 80 79, 75 79, 75 70)))
Please note: the argument 3 identifies the POLYGON type.

all this new cool features ...
... will be released ASAP

SpatiaLite v.3.0 is coming !!!

