Supporting coolest GEOS v.3.3.0 advanced features
(and other miscellaneous stuff)

ST Line Locate Point() /ST _Line Substring()

We'll start from a quite complex LINESTRING [violet line]: for the sake of simplicity we'll call
such LINESTRING as the_line.

SELECT ST Line Interpolate Point(the_line, 0.1);
SELECT ST Line Interpolate Point(the_line, 0.2);

SELECT ST Line Interpolate Point(the_line, 0.9);

These functions will create a POINT laying on the line every 10% of the total line length [green
dots]

SELECT ST Line Substring(the geom, 0.15, 0.45);
SELECT ST Line Substring(the_geom, 0.65, 0.85);

And these will extract to further LINESTRINGsS, the first one ranging from 15% to 45%, and the
second one from 65% to 85% of the total line length [yellow overstrike].

ST OffsetCurve ()

This time too we'll start from the same complex LINESTRING [violet line] named the line.

SELECT ST OffsetCurve(the line, 10, 1);
SELECT ST OffsetCurve(the line, 15, 0);

The first function will create a left-sided curve with an offset factor of 10m [orange line]
And the second function will create a right-sided curve with an offset factor of 15m [green line]

ST ClosestPoint() / ST ShortestLine()

pg_1 .
.

——
———

’ .(:)---“--’--

Suppose a LINESTRING named the_line [blue line] and two distinct POLY GONs named pg [and
pg 2 [violet areas].

SELECT ST_ShortestLine(the line, pg 1)
SELECT ST ShortestLine(the_line, pg 2);
SELECT ST ShortestLine(pgl, pg_2);

Each one of these functions will create a LINESTRING representing the minimum distance line
between two arbitrary geometries [dotted red lines].

SELECT ST ClosestPoint(the line, pg 1)

SELECT ST ClosestPoint(pg_1l, the_line);

The first one will identify the POINT on the_line nearest to pg 1

And the second one will identify the POINT on pg [nearest to the line [yellow dots]

Please note: such points simply represent extremities of the corresponding minimum distance line
identified by ST ShortestLine ().

ST Snap ()

Suppose a LINESTRING named the_line [blue line] and a POLYGON named the polygon [red
area).

‘SELECT ST Snap(the polygon, the line, 10.0);

This function will create a new POLYGON [green area], nicely snapped to the line.

This further example shows the result of ST Snap () using two LINESTRINGs

ST Covers() / ST CoveredBy ()

We'll use again the two LINESTRINGs of the above figure: for the sake of clarity we'll name
the blue_line the first one, and the_green line the snapped one.

SELECT ST Covers (the_green line, the_blue line);
> 0 [false]
SELECT ST_CoveredBy(the_green line, the_blue_line);

> 1 [true]

SELECT ST Covers (the blue line, the green line);

> 1 [true]

SELECT ST CoveredBy (the blue_ line, the green_ line);
> 0 [false]

You can use these functions to check if one Geometry fully covers (or is covered by) a second
Geometry.

ST SharedPaths ()

Suppose two adjacent POLY GONSs respectively named pg 1 [red area] and pg 2 [brown area]. And
imagine that a strict topological conformity exists between such polygons.

SELECT ST SharedPaths(pg 1, pg 2); ‘

This function will identify any edge portion common to both polygons [magenta lines].

Please note #1: the returned Geometry is constantly represented as a MULTILINESTRING, even
when a single common edge has been identified.

The same operation can be applied to LINESTRINGs as well: imagine a couple of partially
overlapping Linestrings respectively named line [[red] and line 2 [green].

SELECT ST_SharedPaths(line 1, line 2);

Paths commons to both /ine I and line 2 are shown in the figure as yellow lines.

ST UnaryUnion/()

Suppose a quite complex GEOMETRYCOLLECTION named the geom:

GEOMETRYCOLLECTION (POINT (5 5), POINT(3 3), POINT (10 10),

LINESTRING(0 10, 9 10), LINESTRING(3 3, 7 7), LINESTRING(1 5, 5 1),
POLYGON((5 0, 10 O, 10 9, 5 9, 5 0)), POLYGON((O O, 6 0, 6 6, 0 6, 0 0)),
POLYGON((4 2, 7 2, 75, 4 5, 4 2)))

Geometry preview

Please note: this GEOMETRYCOLLECTION is invalid: several items are mutually overlapping.

SELECT ST AsText(ST UnaryUnion(the geom));
> GEOMETRYCOLLECTION (POINT (10 10), LINESTRING(0 10, 9 10),
POLYGON((5 0, 0 O, 0 6, 56, 59, 10 9, 10 O, 6 0, 5 0)))

This function will recover a valid Geometry, as graphically shown in the following figure:

Geometry preview

ST LineMerge ()

Suppose some complex road (river, railway ...) represented by many and many sparse fragments.

In the above figure each single fragment is represented by a different colour.

And suppose you have been already able to put all the above fragments into a single
MULTILINESTRING named the_fragments (please wait for now: we'll examine this topic in a

further step ...)

‘ SELECT ST LineMerge (the_fragments) ;

All right: using ST LineMerge () you'll now have a single continuous LINESTRING.

ST BuildArea() / ST Polygonize() / ST Collect()

More or less, the same as above: this time too you'll start from a MULTILINESTRING. named
the_ fragments [this actually being a sparse collection of line fragments]. In the above figure each
single fragment is represented by a different colour.

‘ SELECT ST BuildArea(the_fragments) ;

This function will try to reassemble a valid POLYGON / MULTIPOLYGON starting from sparse
fragments.

And here is the reassembled POLYGON generated by ST BuildArea ().

The ST Polygonize () function performs the same identical task, but using a different syntactic
approach:

SELECT ST Polygonize(the line)
FROM my lines

WHERE polygon_id = x

GROUP BY polygon_id;

This one is an aggregate function [... GROUP BY ...], so there is no need at all to pass a
MULTILINESTRING geometry containing any required line-fragment.

Using this second approach you can simply have an ordinary table [my [ines], each row containing
an unique line-fragment [the line].

There is no conceptual difference between them: it's simply a matter of convenience and of different
syntax flavors: but the main core is anyway one and the same.

The ST Collect () function too can be successfully used on these cases, when aggregating
several elementary Geometries into an unique complex Geometry is required.

SELECT ST AsText (ST _Collect(
GeomFromText ('POINT(1 2)'),
GeomFromText (' POINT (3 4)')

))
> MULTIPOINT(1 2, 3 4)

SELECT ST AsText (ST_Collect(
GeomFromText ('POINT (1 2) '),
GeomFromText (' LINESTRING(3 4, 5 6)"')

)) s

> GEOMETRYCOLLECTION (POINT (1 2), LINESTRING(3 4, 5 6))

This first form accepts two arbitrary input Geometries, and return a complex Geometry representing
both elementary Geometries.

SELECT ST Collect(the_line)

FROM my lines

WHERE polygon_id = x

GROUP BY polygon_ id;

This second form is an aggregate function instead: and will return a complex Geometry
representing any elementary Geometry found on the underlying aggregate target.

SELECT ST Polygonize (the line)
FROM my lines

WHERE polygon_id = x

GROUP BY polygon id;

SELECT ST BuildArea (ST _Collect(the_line))

FROM my lines

WHERE polygon id = x

GROUP BY polygon_ id;

Accordingly to all the above considerations, both SQL queries performs the same identical task.
They only apparently are different; but in substantial terms they are absolutely equivalent.

ST DissolvePoints() / ST DissolveSegments ()

We'll start again using the same POLYGON of the previous example, naming it as the_polygon

o Q,
8 <§p o © @,
o, " o
(@ %% o° ?3 o™
&5)&!}0 [s] (ﬁﬁﬂ [n]
o
Po o g
) g ® . 5‘9
& 9 5
%o o 5]
8 o
8
8 .
o
of
o
0‘6 Q{P% o
%) o
2]
o
o
“’ §
3]
o
o S
&
j @000 o o o°
o
o © 0 %{) dﬂ 0 8]

SELECT ST DissolvePoints(the_polygon) ;

This function will dissolve any arbitrary Geometry into a MULTIPOINT: any POINT will remain
unaffected, but any LINESTRING or RING will simply be represented by its Vertices.

/ .

-

SELECT ST DissolveSegments (the polygon) ;

And this second function will dissolve any arbitrary Geometry into a MULTILINESTRING or
GEOMETRYCOLLECTION: any POINT will remain unaffected, but any LINESTRING or RING
will be then represented by simple segments (each one of them being represented by a different
colour in the above figure).

Please note: dissolving into segments some broken (invalid) POLY GON/MULTIPOLY GON, and
then calling ST BuildArea () may be a good approach to recover a valid Geometry.

ST CollectionExtract()

Suppose a quite complex GEOMETRYCOLLECTION named the geom:
GEOMETRYCOLLECTION (POINT (105 105), POINT (103 103), POINT (102 102),
LINESTRING (0 10, 9 10), LINESTRING(30 30, 37 37), LINESTRING(51 55, 55 51),
POLYGON((75 70, 80 70, 80 79, 75 79, 75 70)))

You can invoke the ST CollectionExtract () function in order to extract elementary
Geometries from the Collection by homogeneous type.

SELECT ST AsText(ST _CollectionExtract(the geom, 1));
> MULTIPOINT (105 105, 103 103, 102 102)

Please note: the argument 7 identifies the POINT type.

SELECT ST AsText(ST _CollectionExtract(the geom, 2));
> MULTILINESTRING((O 10, 9 10), (30 30, 37 37), (51 55, 55 51))

Please note: the argument 2 identifies the LINESTRING type.

SELECT ST AsText(ST _CollectionExtract(the geom, 3));
> MULTIPOLYGON(((75 70, 80 70, 80 79, 75 79, 75 70)))

Please note: the argument 3 identifies the POLYGON type.

all this new cool features ...
... will be released ASAP

SpatialLite v.3.0 1s coming !!!

