
Foreign Key constraints
are now supported by SQLite

Starting since v. 3.6.19 SQLite introduced fully support for Foreign Key constraints. And
obviously, SpatiaLite too inherits such really interesting feature.

Here you can find the original SQLite doc page about Foreign Key constraints:
http://www.sqlite.org/foreignkeys.html

A quick and fast tutorial:

Step #1:

C:\>spatialite
SpatiaLite version ..: 2.4.0 Supported Extensions:
 - 'VirtualShape' [direct Shapefile access]
 - 'VirtualText [direct CSV/TXT access]
 - 'VirtualNetwork [Dijkstra shortest path]
 - 'RTree' [Spatial Index - R*Tree]
 - 'MbrCache' [Spatial Index - MBR cache]
 - 'VirtualFDO' [FDO-OGR interoperability]
 - 'SpatiaLite' [Spatial SQL - OGC]
PROJ.4 version: Rel. 4.7.1, 23 September 2009
GEOS version: 3.1.1-CAPI-1.6.0
SQLite version: 3.6.20
Enter ".help" for instructions
spatialite>

Launch the spatialite CLI front end: as you can notice it includes SQLite v. 3.6.20, supporting the
Foreign Key constraints. You can use the spatialite-gui tools as well, if you wish.

Step #2:

spatialite> PRAGMA foreign_keys;
1

By default any SQLite connection starts keeping the Foreign Key constraints disabled: this is to
ensure full compatibility with older versions of SQLite.
In order to enable Foreign Key constraints you have to declare: PRAGMA foreign_keys = 1;
But SpatiaLite performs this task automatically: as you can see in the above step, Foreign Key
constraints are enabled as soon as spatialite establishes a database connection.

Important notice:
This isn't true when using the SpatiaLite's C API. In this case the developer is fully responsible for
activating (or not) the Foreign Key constraints.

http://www.sqlite.org/foreignkeys.html

Step #3:

spatialite> CREATE TABLE mother (
 ...> last_name TEXT NOT NULL,
 ...> first_name TEXT NOT NULL,
 ...> birth_date DATETIME NOT NULL,
 ...> CONSTRAINT pk_mother PRIMARY KEY
 ...> (last_name, first_name, birth_date));

Now we'll create a mother table.
• each mother is identified by her full name and birth date.
• we define a Primary Key spanning over three columns: so we are granted that only one row

can be inserted presenting the same values combination. This is a so-called unique identifier.

Step #4:

spatialite> CREATE TABLE daughter (
 ...> last_name TEXT NOT NULL,
 ...> first_name TEXT NOT NULL,
 ...> birth_date DATETIME NOT NULL,
 ...> mother_last_name TEXT NOT NULL,
 ...> mother_first_name TEXT NOT NULL,
 ...> mother_birth_date DATETIME NOT NULL,
 ...> CONSTRAINT pk_daughter PRIMARY KEY
 ...> (last_name, first_name, birth_date),
 ...> CONSTRAINT fk_daughter FOREIGN KEY
 ...> (mother_last_name, mother_first_name, mother_birth_date)
 ...> REFERENCES mother (last_name, first_name, birth_date));

Now we'll create a daughter table:
• each daughter is identified by her full name and birthdate
• and we've defined a Primary Key to ensure uniqueness
• but now we've defined a Foreign Key as well:

◦ so that each daughter row references a corresponding row into the mother table

This one is a so called one-to-many relationship: each one mother may have zero, one or many
daughters, but each daughter has to have one and only one mother.

Step #5:

spatialite> INSERT INTO mother VALUES ('Smith', 'Jane', '1949-07-12');
spatialite> INSERT INTO mother VALUES ('Green', 'Mary', '1967-02-18');
spatialite> INSERT INTO mother VALUES ('White', 'Susan', '1978-06-12');

Now we'll INSERT some rows into the mother table.

spatialite> INSERT INTO mother VALUES ('Green', 'Mary', '1967-02-18');
SQL error: columns last_name, first_name, birth_date are not unique

Obviously we are not allowed to INSERT again this row, because such an action will violate the
uniqueness constraint granted by the Primary Key we've defined.

Step #6:

spatialite> INSERT INTO daughter VALUES (
 ...> 'Ross', 'Stephanie', '1975-03-02',
 ...> 'Smith', 'Jane', '1949-07-12');
spatialite> INSERT INTO daughter VALUES (
 ...> 'Ross', 'Helen', '1978-09-21',
 ...> 'Smith', 'Jane', '1949-07-12');

Now we'll INSERT some rows into the daughter table.

spatialite> INSERT INTO daughter VALUES (
 ...> 'McCain', 'Mary', '1972-11-09',
 ...> 'Smith', 'Mary', '1955-04-05');
SQL error: foreign key constraint failed

Please note: this INSERT will fail, because we've not yet defined any Mary Smith into the mother
table. This one is a Foreign Key constraint violation, and SQLite forbids this operation.

Step #7:

spatialite> DELETE FROM mother
 ...> WHERE last_name = 'White' AND first_name = 'Susan';

There is nothing wrong in this DELETE statement

spatialite> DELETE FROM mother
 ...> WHERE last_name = 'Smith' AND first_name = 'Jane';
SQL error: foreign key constraint failed

Please note: this DELETE will fail, because there are two rows into the daughter table referencing
the mother row we are attempting to DELETE. This too is a Foreign Key constraint violation, and
SQLite forbids this operation.

spatialite> BEGIN;
spatialite> DELETE FROM daughter
 ...> WHERE mother_last_name = 'Smith'
 ...> AND mother_first_name = 'Jane';
spatialite> DELETE FROM mother
 ...> WHERE last_name = 'Smith' AND first_name = 'Jane';
spatialite> COMMIT;

This works fine, because we are now deleting any dependent row form the daughter table before
attempting to DELETE the required row from the mother table.

